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Abstract

This paper provides a user-friendly approach for moment-based estimation in high-dimensional

contexts where many moments/instruments are available. Several economic applications in-

volve many instruments. In this paper, we address the issue of efficient estimation in such

frameworks. In fact, using many moment conditions can improve the efficiency of GMM-

type estimators, as is well known, but can also lead to heavily biased estimates due to strong

overidentification. We consider a specific setting where the large set of moments is derived

from a single conditional moment restriction. The benchmark estimator we consider is the

continuous updating GMM estimator (CUE) due to its relatively low bias under many mo-

ment conditions. We introduce a Ridge-type regularized version of CUE (RRCUE) to address

the singularity problem of the weighting matrix under many moments. We show that the

RRCUE estimator is consistent, asymptotically normal, and reaches the semi-parametric effi-

ciency bound under an asymptotic regime where the regularization parameter goes to zero

at a certain rate. We propose a data-driven approach for selecting the optimal regulariza-

tion parameter based on cross-validation criteria. We evaluate the performance of the RRCUE

through Monte Carlo simulations. Our results reveal that regularization reduces the disper-

sion problem of CUE and improves efficiency, although it introduces some bias that remains

relatively low with a moderately large number of moments. In the specific linear instrumen-

tal variables framework, our estimator is shown to be competitive with some state-of-the-art

estimators in the field. We apply our method to revisit the Hall and Jones (1999) empirical

application, which aims to estimate the effect of the quality of institutions and government

policies, the so-called social infrastructure, on output per worker. Our empirical results are

consistent with simulation results, providing estimates with better precision.
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1 Introduction

The issue of efficient estimation of models involving many instruments/moments is an important

part of the econometric literature. This paper considers the efficient estimation of a parameter of

interest defined by a single conditional moment restriction. This framework is compatible with

several applications in microeconomic data where a large set of valid instruments is available.

Examples include an influential instrumental variable study that estimates the economic return

to schooling. Angrist and Frandsen (2022) revisiting the Angrist and Krueger (1991)’s use up to

1,530 instruments for schooling by interacting quarter of birth dummies, year of birth dummies,

and state of birth dummies. Altonji et al. (2013) examine a joint model of earnings, employment,

job changes, wage rates, and work hours over a career with a full specification of 2, 429 moments.

Eaton et al. (2011) explore the sales of French manufacturing firms in 113 destination countries

with 1, 360 moments. Han et al. (2005) investigate the cost efficiency of the Spanish saving banks

in a time-varying coefficient model with 872 moments.

Efficient estimation of models with conditional moment restrictions poses a challenging prob-

lem. Indeed, many unconditional moment restrictions can be obtained from nonlinear transfor-

mations of an exogenous variable or by using interactions between various exogenous variables.

Selecting a small number of moments may lead to a loss of efficiency in finite dimension since

a single conditional moment restriction is equivalent to an infinite countable sequence of un-

conditional moments under certain conditions (see, Chamberlain, 1987; Donald et al., 2003).

However, all the information in the conditional moment restriction will eventually be accounted

for by allowing the number of unconditional moments to grow with the sample size, thus achiev-

ing asymptotic efficiency (Donald et al., 2003). This suggests that, rather than using the infinite

set of moments available, one can use a reasonably large number of them (even larger than the

sample size) to gain efficiency in applications.

GMM-type estimation with a large number of moments presents certain challenges. Firstly,

while it can improve asymptotic efficiency, using an excessive number of moments can deteriorate

the finite sample properties of the GMM estimator. Specifically, the standard two-step GMM esti-

mator can exhibit significant bias and/or inaccuracy, even in applied work with a large number

of observations (see, Hahn and Hausman, 2003; Hansen et al., 2008; Newey and Smith, 2004;

Newey and Windmeijer, 2009). This trade-off between variance and bias is known in the litera-

ture as the “many moments problem”. The benchmark estimator we consider is the Hansen et al.

(1996)’s continuous updating estimator (CUE), due to its relatively low bias when dealing with

a large number of moments. Secondly, the weighting matrix used in the CUE’s objective function

may become singular when dealing with a substantial number of moment conditions. Conse-

quently, the CUE estimator may become infeasible or exhibit poor finite sample properties. Lastly,

the CUE estimator is not guaranteed to have finite moments of any order, resulting in the undesir-

able property of significant dispersion in the estimates (see, Guggenberger, 2005; Hausman et al.,

2011, 2012). This property is referred to in the literature as the “no-moments problem” of CUE.

We introduce ridge-type regularization in the weighting matrix to address the singularity prob-

lem. The resulting estimator is referred to as the regularized CUE (RRCUE). We demonstrate

that the RRCUE estimator can be derived through L2 penalization of the generalized empirical
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likelihood (GEL) representation of CUE. We establish that RRCUE is consistent and asymptoti-

cally normal, subject to certain restrictions on the convergence rate of the regularization param-

eter. Furthermore, its asymptotic variance achieves the Chamberlain (1987)’s semiparametric

efficiency bound. To assess the benefits of regularization, we conduct a Monte Carlo simulation.

Our findings demonstrate that regularization has the potential to alleviate the no-moments prob-

lem observed in CUE by reducing the dispersion of the CUE estimator. Additionally, regularization

aids in improving the efficiency of the CUE estimatorin finite sample, albeit at the cost of intro-

ducing some bias. However, this bias remains smaller than the GMM overidentification bias in

almost all settings we consider.

This article contributes to the extensive literature on many instruments/moments. This liter-

ature can be divided into two parts. The first part, which dates back to Bekker (1994), focuses on

an asymptotic framework where the number of moments, denoted by K , grows with the sample

size, denoted by n, but remains relatively small (see, e.g., Chao and Swanson, 2005; Donald et al.,

2003, 2009; Donald and Newey, 2001; Hansen et al., 2008; Hausman et al., 2012; Newey and

Windmeijer, 2009, among others). Specifically, Hansen et al. (2008) derived asymptotics prop-

erties of the limited information maximum likelihood (LIML) and Fuller (1977) estimators under

a variety of many instrument asymptotics, including the many instrument sequence of Bekker

(1994) and the many weak instruments sequence of Chao and Swanson (2005) and Stock and

Yogo (2005). Newey and Windmeijer (2009) derived properties of CUE under many weak mo-

ment conditions as those of Hansen et al. (2008). Donald et al. (2003) demonstrated that the

generalized empirical likelihood (GEL) class, including CUE, offers consistent and asymptotically

normal estimators for models with conditional moment restrictions, which attain the semipara-

metric efficiency bound under a stringent condition on the growth rate of K relative to n. Donald

and Newey (2001) and Donald et al. (2009) proposed a method to select the optimal number of

moments by minimizing an approximate mean square error derived from higher-order expansion.

This paper falls into the second strand of literature that does not require selecting moments. Pa-

pers in this strand allow for the sample size to grow faster than the number of moments (see, for

example, Belloni et al., 2012; Carrasco, 2012; Carrasco and Tchuente, 2015; Shi, 2016, among

others). In particular, Belloni et al. (2012) recommended using LASSO in the first step to con-

struct the optimal instrument when assuming the approximate sparsity of the first stage equation.

Carrasco (2012) proposed three regularized estimators to improve the small sample properties

of the standard two-stage least squares (2SLS) estimator when dealing with a large number of

instruments. Carrasco and Tchuente (2015) extended this regularization approach to the lim-

ited information maximum likelihood (LIML) estimator and demonstrated that the regularized

LIML estimator has finite first moments provided that the sample size is sufficiently large. This

paper can be seen as an extension of Carrasco and Tchuente (2015) from efficient estimation

of linear homoscedastic models using LIML to nonlinear heteroscedastic models using the con-

tinuous updating estimator (CUE). Other papers in the literature address specific issues such as

heteroscedasticity and the no-moments problem. Hausman et al. (2012) addressed the problem

of many instruments in heteroskedastic data and recommended using a jackknife version of the

Fuller (1977) estimator in applications that align with this framework. Hansen and Kozbur (2014)

proposed a ridge-regularized version of the jackknife instrumental variable estimator (JIVE) that
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is robust to heteroscedasticity in the presence of many instruments. Hausman et al. (2011) pro-

posed a modification of the continuous updating estimator (CUE) to address the no-moments

problem and improve the finite sample properties of the standard CUE in time series settings with

many weak moment conditions. In a more recent work, Angrist and Frandsen (2022) investi-

gated the performance of machine learning (ML) for instrument selection. They argued that the

optimal way to leverage the ML toolkit is to combine it with a sample splitting procedure.

The rest of the paper is structured as follows. Section 2 introduces the framework. Section 3

presents the Ridge regularized continuous updating estimator (RRCUE). In Section 4, we derive

first-order asymptotic properties of the RRCUE. In Section 5, we suggest a data-driven procedure

for selecting the optimal regularization parameter using cross-validation. We conduct a large-

scale Monte Carlo experiment to evaluate the benefits of regularization in Section 6. Section 7

applies our method to estimate the impact of institutions and government policies on productivity.

Section 8 concludes our findings, while technical proofs and additional lemmas are provided in

the Appendix.

2 The framework and moment restrictions

We consider an environment where there are many unrestricted moment conditions generated

by a single conditional moment restriction (CMR) like Chamberlain (1987) and Donald et al.

(2003, 2009). To describe this setting let w denote a single observation from an i.i.d. sequence

(w1, w2, . . .), β a p× 1 parameter vector, and ρ(w,β) a scalar that can be seen as a residual. z is

a subvector acting as conditioning variables such that for a value β0 of the parameters

E [ρ(w,β0)|z] = 0, (1)

where E [·] is the expectation taken with respect to the distribution of w.

We rely on GMM-type estimator to address the issue of efficient estimation of the parameter

β0. We need a vector of unrestricted moment conditions for this purpose. It is well known that

that a conditional moment restriction as in Eq. (1) is equivalent to a countable number of uncon-

ditional moment restrictions under certain conditions like the one in Assumption 1(b) below, see

e.g., Chamberlain (1987). Following Donald et al. (2003, DIN03 hereafter), our unconditional

moment conditions are based on splines or other approximating functions like power series. For

each positive integer K , let qK(z) = (q1K(z), . . . , qKK(z))
′ be a K×1 vector of approxamating func-

tions. Under Assumption 1(b) below DIN03 showed that the conditional moment restriction of

Eq. (1) is equivalent to a sequence of unconditional moment restrictions of the following form

E [g(x ,β0)] = 0, (2)

where g(x ,β) = qK(z)ρ(w,β) and x = (w′, z′)′. The immediate consequence of this result is

that an efficient estimation of β0 under CMR in Eq. (1) can be obtained from the sequence of

unconditional moments of Eq. (2) by letting K grows with the sample size n. Indeed, all the

information in the CMR will be eventually accounted for by letting K goes to infinity with n. For
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notational convenience, we omit the K superscript on g(w,β) which denotes its dependence on

the number K of approximating functions.

In the literature, there are sevaral choices of the approximating functions, qkK(z), including

power series, splines and Fourier series. In this article, we will focus on the first two. They both

have faster approximation rates for smoother functions (up to the order of the spline or the power

serie). Unlike power series, spline approximations are not severely affected by singularities (e.g.

discontinuities) in the function being approximated. To describe qK(z) in detail, consider the

simple case where z is a scalar. In this case the vector of power series approximating functions is

given by

qK(z) =
�

1, z, z2, . . . , zK−1
�′

. (3)

For splines, let s be a positive scalar giving the order of the spline. Let t1, . . . , tK−s−1 denote knots

and let ξ(z) = z1{z>0}, where 1A denotes the indicator function for the event A. Then a vector of

spline approximating functions is given by

qK(z) = (1, z, . . . , zs,ξ (z − t1)
s , . . . ,ξ (z − tK−s−1)

s)′ . (4)

The most common specification is s = 3. In practice, it is recommended to choose the knots t j in

the observed data range of z, see e.g. Donald et al. (2003). We impose the following conditions

on the sequence qK(z) and the distribution of z. Let Z denotes the support of z.

Assumption 1. (a) For each K there is a constant ζ(K) ≥
p

K and a positive constant C such
that: E

�

qK(z)′qK(z)
�

is finite and supz∈Z



qK(z)


 ≤ Cζ(K), (b) for any a(z) with E
�

a(z)2
�

<∞
there are K × 1 vectors γK such that as K −→ ∞, E

�

�

a(z)− q̃K(z)′γK

	2�

−→ 0, where q̃K(z) =
qK(z)/ζ(K), (c) for each K, E

�

q̃K(z)q̃K(z)′
�

has only nonzero eigenvalues and there is θ ≥ 1/2 such
that for any b(z) with E

�

b(z)2
�

<∞ and for any nonnegative scalar function U(z) bounded away
fron zero1,

∞
∑

j=1

�

E
�

b(z)q̃K(z)
�′
φ j

�2

λ2θ+1
j

<∞, (5)

where
�

λ j,φ j : j = 1,2, . . . K
�

are eigenvalues and orthonormal eigenvectors of the K ×K symmetric
and positive semidefinite matrix L = E

�

U(z)q̃K(z)q̃K(z)′
�

.

Assumption 1(b) is similar to Assumption 1 of DIN03. DIN03 argue that its specific role is to

obtain estimators that achieve the Chamberlain (1987)’s semiparametric effiency bound by en-

suring that linear combinations of qK(z) can approximate certain square integrable function of z.

Assumption 1(a) is similar to a normalization of the approximating functions like that adopted

by Newey (1997) and Donald et al. (2003, 2009). The bound ζ(K) plays an important role in the

asymptotic theory for GMM and the generalized empirical likelihood (GEL) class of estimators

developed by DIN03. DIN03 showed under some mild conditions that Assumption 1(b) is suffi-

cient to obtain the asymptotic efficiency of the continuous updating estimator (CUE), known as
1The sum in Eq. (5) is defined by

lim
K→∞

K
∑

j=1

�

E
�

b(z)q̃K(z)
�′
φ j

�2

λ2θ+1
j

.
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an element of the GEL class (Newey and Smith, 2004), if the condition ζ(K)2K2/n −→ 0 holds.

Such a condition on the growth rate of K restrict the number K of moment conditions that can be

used in applications. We have shown that Assumption 1(b) is no longer sufficient to obtain the

asymptotic efficiency of the regularized estimator that we will introduce in the next section. An

additional condition given by Assumption 1(c) is required. On the one hand, Assumption 1(c)

implies that eigenvalues of the matrix are all non-zero for fixed K although they can converge

to zero if K grows with the sample size2. On the other hand, the condition in Eq. (5) is similar

to that used by Carrasco (2012) and Carrasco and Tchuente (2015). This condition is impor-

tant to obtain asymptotic efficiency of the regularized estimator. More pricisely, as pointed out

by Carrasco et al. (2007), this regularity condition will facilitate the calculation of the rate of

convergence of the regularization bias. The value of θ in Eq. (5) measures how well the vector

of instruments q̃K(z) approximates a certain square integrable function, b(z). The larger θ , the

better the approximation. For θ = 1/2, condition (5) implies that E
�

b(z)q̃K(z)
�

belongs to the

range of L (Carrasco et al., 2007).

We show under Assumption 1 and some regularity conditions that a regularization of the

second moment of g(w,β) allows to free the number of moments K from any constraint as the

one imposed by DIN03 to obtain asymptotic efficiency. Indeed, our rates of convergence do no

longer depend on K but only on the sample size n and the regularization parameterα. For example

we show that the regularized version of CUE is consistent under the asymptotic where K goes to

infinity and α goes to zero as the sample size goes to infinity with the following restriction on the

convergence rate of α relative to n: α−2n−1/2+1/γ → 0. Asymptotic normality of the regularized

estimator requires a stronger restriction, that is, α−5/2n−1/2+1/γ → 0. The parameter γ > 2 is

specified as in Assumption 2 bellow.

An explicit formula for ζ(K) is available for a number of cases. For example it has been

shown under some unrestricted conditions that ζ(K) =
p

K for splines and ζ(K) = K for power

series, see e.g., Newey (1997) among others. Under Assumption 1(a), E
�

qK(z)′qK(z)
�

= O(ζ(K)2)
and therefore the second moment matrix of the approximating functions is a trace-class matrix3

(even for large K) if they are normalized by the bound ζ(K). We show in this paper that this

type of normalization is useful to obtain convergence rates that do not depend on the number

K of moment conditions. DIN03 used an additional condition, that is A
def
= E

�

q̃K(z)q̃K(z)′
�

has a

smallest eigenvalue bounded away from zero uniformly in K . This restriction limits the number of

moments K that can be used in practice and does not make it possible to deal with the cases where

the matrix A is neraly singular due to the numerosity of approximating functions. Regularization

will allow us to get rid of such a condition by allowing A nearly singular as K grows with the

sample size4.

2Which is less restrictive than the condition used by Donald et al. (2003), that is, E
�

q̃K(z)q̃K(z)′
�

has smallest
eigenvalue bounded away from zero uniformly in K .

3A matrix is said to be trace-class matrix if its trace is a finite number. If a trace-class matrix is symmetric, then
its maximum eigenvalue is bounded above.

4The nearly singularity of A refers here to the cases where its minimal eigenvalue, although different from zero,
goes to zero as K goes to infinity.
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3 Ridge-regularized version of CUE

One of the standard approaches to efficiently estimate the parameter of interest β0 defined by the

conditional moment restriction of Eq. (1) is to use GMM-type estimators based on unconditional

moment restrictions as specified in Eq. (2). The role of the approximating functions in this

specification of the moment conditions is to make the CMR approximately satisfied in the sample.

Asymptotic efficiency is then obtained by letting K grow with n at a certain rate (Donald et al.,

2003). To gain efficiency in finite sample, the use of many approximating functions may be

necessary. As is well known, one of the costs of using many approximating functions is that

the sample counterpart of the second moment matrix of the moment function, g(w,β), might

be ill-conditioned. Following Carrasco and Florens (2000), Carrasco (2012), and Carrasco and

Tchuente (2015) among others, we use regularization to fix this problem.

The benchmark estimator we consider is the continuous updating GMM estimator (CUE) due

to its relatively low bias with many moment conditions. Before presenting the regularized CUE,

we begin by recalling the standard CUE estimator. We introduce here some notations to ease the

presentation of estimators. Let qi = qK(zi)/ζ(K), ρi(β) = ρ(wi,β), gi(β) = qiρi(β), ĝ(β) =
n−1

∑n
i=1 gi(β), bΩ(β) = n−1

∑n
i=1 gi(β)gi(β)′ = n−1

∑n
i=1ρi(β)2qiq

′
i, and Ω(β) = E

�

ρi(β)2qiq
′
i

�

.

The Hansen et al. (1996)’s CUE uses bΩ(β)−1 as weighting matrix without replacing β by a first

step estimator as it is the case for the Hansen (1982)’s conventional two-step GMM estimator. It

is defined by

β̂CU E = arg min
β∈B

ĝ(β)′bΩ(β)−1 ĝ(β). (6)

In the sequel, we will refer to this estimator as the standard CUE.

Note that the standard GMM estimator and the standard CUE are specialized for the cases with

K < n. They can be infeasible when the number of moment conditions is larger than the sample

size, restricting their use in empirical applications. Indeed, when K is larger than n or smaller than

n but close to n, the weighting matrix used in the CUE’s objective function is singular or nearly

singular. To illustrate this fact, assume that the error term ρi(β0) is conditional homoskedastic

with E
�

ρi(β0)2|zi

�

= σ2. Then, by the law of iterated expectations, Ω
def
= Ω(β0) = σ2E

�

qiq
′
i

�

. If

q := [q1, . . . , qn]′ then the sample counterpart of Ω, bΩ := bσ2q′q/n is singular when K > n. It is

natural to think that in general the matrix bΩ(β) suffers from this singularity problem when K > n.

Even when K is smaller than n but large, the naive inverse of bΩ(β) will be unstable in the sense

that a seemingly innocuous change in the sample moment function may induce a large variation

of bΩ(β)−1 ĝ(β). A matrix with such a property is said to be ill-conditioned.

A Monte Carlo experiment by Hausman et al. (2012) reveals that using an heteroskedasticity

consistent weighting matrix can degrade the finite sample performance of the continuously up-

dated estimators (CUE) with many moments. We suspect that the instability of the inverse of the

weighting matrix plays an important role in the deterioration of the finite sample properties of

CUE under many moment restrictions. This instability of the naive inverse of bΩ(β) for a large K is

caused by the fact that its condition number is large. Since the condition number is defined as the

ratio of the maximum eigenvalue (λmax) and the minimum eigenvalue (λmin), it is large if λmax is

very large or λmin is close to zero. Before regularizing bΩ(β) we first normalize the approximating
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functions qK(zi) by the upper bound ζ(K) so that it becomes a trace-class matrix. Thus, the only

source of instability of the inverse of bΩ(β) is the fact that its minumum eigenvalue may be close to

zero when K is large compared to n. Another gain of this normalization is to obtain convergence

rates for the regularized estimator which do not depend on K .

We propose to stabilize the inverse of bΩ(β) using Ridge5 type regularization. This consists

in replacing, in the CUE objective function, the naive inverse bΩ(β)−1 by the regularized inverse
�

bΩ(β)α
�−1
=
�

bΩ(β) +αI
�−1

, where α > 0 is the regularization parameter and I is the K × K
identity matrix. The resulting estimator that we refer to as the Ridge regularized CUE (RRCUE)

depends on the regularization parameter α and is defined by

β̂ = ar g min
β∈B

ĝ(β)′
�

bΩ(β)α
�−1

ĝ(β). (7)

The main purpose of this paper is to study properties of RRCUE.

Newey and Smith (2004) showed that the standard CUE is part of a class of estimators in-

troduced by Smith (1997, 2001) called generalized empirical likelihood (GEL) estimators. The

GEL representation of CUE facilitates theoretical derivation of asymptotic properties of CUE.

To describe GEL let s(v) be a function of a scalar v that is concave on its domain, an open

interval V containing zero with s0 = 0 and s1 = s2 = −1 where s j(v) = ∂ js(v)/∂ v j. Let
bΛ(β) = {λ : λ′gi(β) ∈ V , i = 1, . . . , n}. The GEL estimator associated with the concave function s
is the solution to a saddle point problem

β̂GEL = argmin
β∈B

sup
λ∈bΛ(β)

n−1
n
∑

i=1

s
�

λ′gi(β)
�

. (8)

Newey and Smith (2004) showed that β̂CU E = β̂GEL if s(v) is quadratic, e.g., if s(v) = −v − v2/2.

The following theorem establishes a similar result for the RRCUE.

Theorem 3.1. If Assumption 1 (a) is satisfied, then for s(v) = −v − v2/2,
β̂ = argmin

β∈B
sup
λ∈bΛ(β)

P̂(β ,λ) where P̂(β ,λ) = n−1
∑n

i=1 s (λ′gi(β))−
α

2
λ′λ.

This result shows that the regularized CUE can be obtained alternatively by penalizing the

L2 norm of λ in the GEL criterion. This is an important result that will be useful for deriving

asymptotic properties of RRCUE.

Here we give first-order conditions for RRCUE which are useful for deriving first-order asymp-

totic properties. We need some notations. Let π̂i (i = 1, · · · , n) denote the empirical probabilities

associated with β̂ . They are defined by

π̂i = s1

�

λ̂′ ĝi

�

Â

n
∑

j=1

s1

�

λ̂′ ĝ j

�

=
1+ v̂i

∑

j

�

1+ v̂ j

� (i = 1, · · · , n). (9)

where λ̂ = argmaxλ∈Λ̂(β̂) P
�

β̂ ,λ
�

, ĝi = gi

�

β̂
�

, and v̂i = λ̂′ ĝi. These empirical probabilities sum

to one by construction and satisfy the sample moment condition
∑n

i=1 π̂i ĝi = 0 when the first

5There are other regularization methods. For example, Carrasco (2012) considered three other regularization
schemes: Tikhonov, Landweber–Fridman and Principal components.
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order conditions for λ̂ hold. For any function a(w,β), these probabilities can be used to form an

efficient estimator
∑n

i=1 π̂ia
�

wi, β̂
�

of E [a (w,β0)], as in Newey and Smith (2004). The following

result gives first-order conditions for RRCUE.

Theorem 3.2. If Assumption 1 (a) is satisfied, then the RRCUE first order conditions imply

�

n
∑

i=1

π̂iGi

�

β̂
�

�′
�

Ω̂
�

β̂
�

+αI
�−1

ĝ
�

β̂
�

= 0, (10)

where Gi(β) = ∂ gi(β)/∂ β ′.

4 First order asymptotic properties of the RRCUE

In this section we establish first order asymptotic properties of the regularized estimator. We

show that RRCUE is consistent and asymptotically normal, and achieves the Chamberlain (1987)’s

semiparametric efficiency bound under some standard assumptions. We first give some regularity

conditions for consistency of RRCUE.

Assumption 2. The data are i.i.d. and (a) β0 is unique value of β inB satisfying E[ρ(w,β)|z] = 0;
(b) B is compact; (c) E

�

supβ∈B |ρ(w,β)|2
�

�z
�

is bounded and there is δ1(w) and r > 0 such that
for all β̃ ,β ∈ B , |ρ(w, β̃)−ρ(w,β)| ⩽ δ1(w)∥β̃ − β∥r and E

�

δ1(w)2
�

<∞; (d) there are δ2(w)
and a neighborhood N of β0 such that E

�

supβ∈N |ρ(w,β)|4
�

�z
�

is bounded and for all β ∈ N

|ρ(w;β)−ρ (w,β0) | ≤ δ2(w)∥β − β0∥ and E
�

δ2(w)2|z
�

is bounded; (e) σ(z)2
de f
= E

�

ρ (w,β0)
2 |z
�

is bounded away from zero; (f) there is γ > 2 with E
�

supβ∈B |ρ(w,β)|γ
�

<∞.

Assumption 2(a) is the minimal identification condition that β0 is the unique value where

the conditional moment restriction is satisfied. The stronger condition that there is a known K
such that the unconditional moment restrictions E

�

qK(z)ρ(w,β)
�

= 0 serve to identify β0 is not

required. As K grows with n, the weak condition in Assumption 2(a) is sufficient to identified

β0 as justified in Lemma 2.1 of DIN03. Assumption 2(b) is the usual compacity assumption.

Assumption 2(c) imposes a bounded second conditional moment and Lipschitz condition, that

is used to apply the uniform convergence result of Newey (1991). Assumption 2(d) plays an

important role in obtaining a convergence rate for the sample second moment matrix Ω̂
�

β̂
�

.

Assumption 2(f) requires the exitence of slightly higher moments than consistency for GMM, as

in Hansen (1982).

Let γ > 2 be as defined in Assumption 2(f). For any ϵ > 0 such that 1/2− 1/γ− ϵ > 0, we

obtain the following consistency result:

Theorem 4.1. If Assumptions 1 and 2 are satisfied, K →∞, α→ 0 and αn1/2−1/γ−ϵ →∞, then
β̂

p
→ β0.

The restriction, αn1/2−1/γ−ϵ→∞, on the rate of convergence of the regularization parameter

α is the counterpart of the restriction on the growth rate of K imposed by DIN03 to obtain consis-

tency of the standard CUE, that is ζ(K)2K/n1−2/γ→ 0. This restriction on the rate of convergence
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of α is weaker when there are more moments of ρ(zi,β). It implies in particular that α goes to

zero slower that 1/
p

n.

We need some additional conditions for asymptotic normality. Let ρβ(w,β) = ∂ ρ(w,β)/∂ β ′,
D(z) = E

�

ρβ (w,β0) |z
�

, and ρββ(w,β) = ∂ 2ρ(w,β)/∂ β∂ β ′.

Assumption 3. (a) β0 ∈ int(B) ; (b) ρ(w,β) is twice continuously differentiable in a neightorhood
N of β0; (c) E

�

supβ∈N


ρβ(w,β)




2 �
�z
�

and E
�

ρββ (w,β0)


 |z
�

are bounded; (d) E [D(z)′D(z)] is
nonsingular.

These assumptions are quite standard regularity conditions used by DIN03. Part (d) is the local

identication condition that is essential for asymptotic normality. Parts (b) and (c) are standard

smoothness conditions.

We need to introduce some notions before stating the asymptotic normality result. Let ĝi =

gi(β̂), bGi = Gi(β̂), bG =
∑n

i=1 π̂i
bGi, bΩ=

∑n
i=1 ĝi ĝ

′
i/n, and bV =

�

Ĝ′
�

Ω̂+αI
�−1

Ĝ
�−1

.

Theorem 4.2. If Assumptions 1, 2 and 3 are satisfied, K →∞, α→ 0, α3/2n1/2−1/γ−ϵ →∞, and
α5/2n1/2→∞ then

p
n
�

β̂ − β0

� d
−→N (0, V ), V̂

p
−→ V, V =

�

E
�

D(z)′σ(z)−2D(z)
��−1

.

This result gives the restrictions on the convergence rate of α for the regularized CUE esti-

mator to reach the semiparametric efficiency bound of Chamberlain (1987). These restrictions

imply, in particular, that α goes to zero slower than 1/n1/5. This condition is the counterpart of

the restriction on the growth rate of K imposed by DIN03 to obtain asymptotic efficiency of the

standard CUE, that is, ζ(K)2K2/n→ 0. The main advantage is that our rate no longer depends

on K , so more instruments can be used to gain efficiency in finite samples. Although the standard

CUE and its regularized version are both asymptotically efficient, their small sample properties

can differ, as shown in Monte Carlo simulations. Theorem 4.2 also provides an efficient estimator

of the asymptotic variance of the regularized CUE. To the best of our knowledge, these asymptotic

results are new and extend DIN03 to the asymptotic framework where no restriction is imposed

on the growth rate of K relative to n.

Alternative variance estimator: more robust to many moments

Newey and Windmeijer (2009) argued that in the presence of many moments (potentially weak),

the standard textbook variance estimator bV0/n, where bV0 =
�

bG′bΩ−1
bG
�−1

, does not provide a good

approximation to the finite sample distribution of the standard CUE estimator. They suggest

instead approximating the finite sample variance of β̂CU E by eV/n, where eV = Ĥ−1D̂′Ω̂−1D̂Ĥ−1.

They argued that, in the presence of many moment conditions, the former underestimates the

finite sample variance of β̂CU E, the latter then adjusts for the presence of many moments. In the

same spirit, we suggest using the following estimator of the asymptotic variance of the regularized

CUE estimator,

Ṽ = Ĥ−1D̂′(Ω̂+αI)−1D̂Ĥ−1, (11)

9



where Ĥ =
∂ 2Q̂(β)
∂ β∂ β ′

�

�

�

�

β=β̂

, D̂ = D̂(β̂), Ω̂= Ω̂(β̂), with

Q̂(β) = ĝ(β)′(Ω̂(β) +αI)−1 ĝ(β)/2, D̂(β) =
∑

i

π̂i(β)Gi(β) Ω̂(β) =
1
n

∑

i

gi(β)gi(β)
′, and

π̂i(β) =
1− ĝ(β)′(Ω̂(β) +αI)−1 gi(β)

∑

j

�

1− ĝ(β)′(Ω̂(β) +αI)−1 g j(β)
� .

We will not investigate consistency of Ṽ in this paper, but we believe that strategies used to obtain

consistency of V̂ (see the proof of Theorem 4.2 in the Appendix) can be used to show consistency

of Ṽ under certain restrictions on the convergence rate of the regularization parameter. We see

in simulation that a Wald test of H0 : β = β0 based on Ṽ performs better (in terms of size) in

the presence of many moment conditions compared to the test constructed from V̂ , in almost all

simulation frameworks we considered.

In the next section, we propose a data-driven method for choosing the regularization param-

eter in practice.

5 Data-driven selection of the regularization parameter

This section is devoted to the selection of the optimal regularization parameter. We propose to

employ cross-validation to compute the distance of sample moments from zero, which is then

used as a criterion to select the regularization parameter. This approach aims to choose, from

the family of RRCUEs indexed by α, the estimator that best satisfies the sample counterpart of

the moment condition (2). Indeed, if β̂ is a ‘good’ estimator of β0, the sample moment function
∑n

i=1 g (x i,β0)/n would be ‘close’ to zero, in the sense of a certain norm, if β0 were replaced by β̂ .

Instead of using the simple l2 norm to measure the distance of the sample moment function from

zero, we propose an alternative distance6. We use L-fold cross-validation to construct a ‘suitable’

distance of the sample mean
∑n

i=1 g
�

x i, β̂
� �

n from zero. Using this distance as criteria allows us

to choose α such that the corresponding estimator best satisfies the moment condition of Eq.(2)

even out-of-sample.

To elaborate, let {Jl , l = 1, · · · , L} denote a partition of the set of data indices [n] := {1, 2, · · · , n}.
For each l = 1, . . . , L, let J−l denote the set of all indices in [n] except those in Jl , and let nl denote

the cardinality of Jl . Let β̂−l denote the version of the regularized CUE estimator obtained using

the part of the sample indexed by J−l . The following algorithm describes the general procedure

for choosing the optimal α using L-fold cross-validation.

Algorithm (L-fold CV approach for selecting the optimal α).

1. Consider a grid ∆K of values of α.

6As the entire sample was used to obtain β̂ by minimizing a quadratic function of the sample moment function
∑n

i=1 g (x i ,β0)/n, the simple l2 norm of
∑n

i=1 g
�

x i , β̂
�

/n may provide a misleading measure of how well β̂ satisfies
the sample counterpart of the moment condition (2).
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2. For each α ∈∆K and for each l = 1, · · · , L, compute β̂α−l (resp. β̂αl ) , the version of the RRCUE
obtained using the part of the sample indexed by J−l (resp. Jl). Let eΩl = diag

�

Ω(β̂αl )
�

.

3. For each α ∈∆K and for each l = 1, · · · , L, compute the distance Inl(α) (it measures how well
β̂α−l satisfies the moment condition E [g(x i,β0)] = 0, i ∈ Jl .

Inl(α) =

 

1
nl

∑

i∈Jl

g
�

x i, β̂
α
−l

�

!′

eΩ−1
l

 

1
nl

∑

i∈Jl

g
�

x i, β̂
α
−l

�

!

(12)

4. The optimal α is obtained by

α̂= arg min
α∈∆K

�

In(α) :=
L
∑

l=1

Inl(α)

�

(13)

Remark 5.1.

• The dependence of the grid ∆K in K is motivated by the fact that the regularization of the co-
variance matrix of Ω̂(β) is preceded by the normalization of qi by the upper bound, ζ(K), of the
sup-norm of the approximating functions. Our simulation exercise suggests choosing the grid
∆K to be inversely proportional to K, so that the grid shrinks to zero as K increases. This con-
sideration seems counter-intuitive, as one might think that the regularization parameter would
be higher for larger values of K. However, this intuition could be misleading here because the
normalization performed prior to regularization tends to considerably reduce the eigenvalues of
the matrix Ω̂(β). As a consequence, large values of α will introduce substantial regularization
bias. With this normalization, one expects the optimal choice of α to be a decreasing function of
K. This is why we anticipated this by choosing a grid that narrows towards zero as K increases.
Even when considering a grid that does not depend on K, we observed in simulations that the
optimal choice of α, according to our procedure, decreases with K.

• The number of folds L has to be chosen. We see in simulations that our result is not very sensitive
to a small number of folds (ranging from 2 to 10). In the application, we choose L = 5.

6 Monte Carlo study

This section aims to examine the small sample properties of our RRCUE estimator in order to

evaluate the gain of regularization. The baseline setup for our simulation is given by the following

system,
¨

yi = h(x i,β0) + ei

x i = f (zi) + ui
with β0 = 0.1, (14)

where the first equation is the main structural model and the second is the reduced-form equation

for the right-hand side endogenous regressor. Both yi and x i are univariate, but the underlying

vector of instruments zi is potentially high-dimensional. Our parameter of interest is β0. We
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generate data in a way that E[ei|zi] = 0, given Eq. (1) with ρ(wi,β0) = yi − h(x i,β0) with

wi = (x i, yi)′.
We consider different experiments. Each framework is designed to mimic a specific situation

that can arise in application. The data-generating processes differ: (i) by the type of specification

of the main equation (the fonction h is either linear or nonlinear with respect to β); (ii) by the

nature of the structural disturbance (homoskedastic or heteroskedastic); (iii) by the number of

relevant instruments that enter the first-stage equation (small number or large number); (iv) or

by the way the explanatory power, captured by the concentration parameter, is distributed among

instruments.

In experiments 1 and 2 below, we assume that the reduced-form error term ui
i.i.d.∼ N(0,σ2

u),
with σ2

u = 1. Following Hausman et al. (2012), we suppose that the structural disturbance ei,

which is allowed to be heteroskedastic, is given by

ei = ρui +

√

√ 1−ρ2

φ2 +ψ4
(φv1i +ψv2i) ,

where ρ = 0.3, ψ = 0.86 and conditional on zi1 (where zi j is the jth component of zi), v1i
i.i.d.∼

N
�

0, z2
i1

�

and v2i
i.i.d.∼ N(0,ψ2) are independent of ui. φ = 0 or 1.38072 is chosen so that the

R-squared for the regression of e2 on the instruments7, R2
e2|z, is 0 or 0.2, corresponding to ho-

moskedastic and heterosckedastic cases respectively.

We compare the performance of RRCUE to that of some state-of-the-art estimators in the liter-

ature, including the standard two-step GMM of Hansen (1982) and the standard CUE of Hansen

et al. (1996). In the case of a linear homoskedastic structural equation, we consider four addi-

tional alternative estimators: 2SLS, LIML, the Tikhonov regularized 2SLS estimator (T2SLS) of

Carrasco (2012), and the Tikhonov regularized LIML estimator (TLIML) of Carrasco and Tchuente

(2015). In the case of linear heteroskedastic structural equation, we consider two more alter-

native estimators: Hausman et al. (2012)’s heteroskedasticity-robust version of Fuller (1977)’s

estimator (HFUL) and heteroskedasticity-robust LIML (HLIM).

We set n= 500, and the number of instrumental variables K is chosen from the set {2,30, 50,100}
for experiment 1 and from the set {15,30, 50,100} for experiment 2. With two specifications for

the structural equation (linear or nonlinear), two specifications for the corresponding error term

(homoskedastic or heteroskedastic), and four different choices for the number of instruments,

there are a total of 16 specifications for experiment 1. Similarly, with two different sets of first-

stage coefficients and four different choices for the number of instruments, there are a total of 8

specifications for experiment 2. Therefore, the two experiments total 24 specifications.

For each specification, we performed 10, 000 Monte Carlo simulations. For each draw, we

compute the optimal RRCUE estimator and the alternative comparison estimators. The compu-

tation of the optimal RRCUE requires a suitable choice of the grid ∆K of values for α. We search

for the optimal α in the following 100-point grid,

∆K =
§

1
p

K
×
�

0.0001+ (i − 1)×
0.0499

99

�
�

�

� i = 1, 2, . . . , 100
ª

,

7R2
e2|z = var

�

E
�

e2 | z
�	

/
�

var
�

E
�

e2|z
�	

+ E
�

var
�

e2 | z
�	�

.
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which is the set of 100 points uniformly distributed between 0.0001 and 0.05, where each element

is multiplied by 1/
p

K . This normalization allows the grid to approach zero as K increases.

At the end of the 10,000 replications, we calculate several performance measures for each

estimator. We consider two measures of bias: the mean bias (Mean.bias) and the median bias

(Med.bias); four measures of dispersion: the variance of estimates (Var), the median absolute

deviation (MAD, defined as the median of the absolute value of the difference between simulated

estimates and the median simulation estimate), and the nine decile range ( Ndr(0.95 − 0.05),
defined as the range between the 0.05 and 0.95 quantiles of the distribution of simulated esti-

mates). We also compute the nominal 5% rejection frequency (0.05 rej.Freq) for the Wald test of

H0 : β = β0. To compute the Wald statistic for CUE, we rely on the many-instruments robust stan-

dard error of Newey and Windmeijer (2009), and for RRCUE, we use its regularized counterpart

presented in section 4.

6.1 Experiment 1: Small number of relevant instruments

We first consider a setup with a small number of relevant instruments. In particular, we suppose

that zi
i.i.d.∼ N (0, 1) and f (zi) = πzi, whereπ is a scalar chosen so that the concentration parameter

nπ2 = µ2 = 32. Also, we consider the following set of instruments in the spirit of Hausman et al.

(2012),

qK (zi) =

¨

(1, zi) if K = 2
�

1, zi, z2
i , z3

i , z4
i , zi Di1, · · · , zi Di,K−5

�′
if K ∈ {30, 50,100}

where Dik ∈ {0, 1}, Pr (Dik = 1) = 1/2. This instrument set consists of powers of z up to fourth

power plus interactions with dummy variables. Note that only z affects the reduced-form. Since

the exact specification of the reduced-form is unknown in practice, this framework will also help

evaluate the effect of including more power series than necessary.

In this experiment, we consider two types of specifications for the structural equation:

(i) Model 1a. linear specification, h(x i,β) = β x i,

(ii) Model 1b. nonlinear specification, h(x i,β) = exp(β x i).

For each of these frameworks, we consider cases where the structural disturbance is either ho-

moskedastic (φ = 0) or heteroskedastic (φ = 1.38072.)

Table 1 presents results for experiment 1 with linear structural equation (Model 1a). It offers

a detailed comparison of the RRCUE estimator’s performance against several competitors, includ-

ing CUE, GMM, T2SLS, TLIML, HFUL, and HLIM, under both homoskedastic and heteroskedastic

disturbances across varying numbers of instruments (K). The focus will be on bias (Mean.bias,

Med.bias) and dispersion (Var, MAD, Ndr(0.95 − 0.05)), particularly highlighting RRCUE’s per-

formance relative to CUE, GMM, and other estimators.

Panel A - Homoskedasticity: For small K (K = 2, only instruments that enter the reduced-form

equation are used), regularization is not needed. In fact, the median bias for RRCUE is close to

that of CUE and slightly better than GMM. In terms of dispersion, RRCUE and CUE report almost

the same variance and MAD, while GMM shows slightly lower variance, though this comes at
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the cost of higher median bias. As K increases (K = 30,50, 100), RRCUE outperforms GMM

in terms of median bias, although regularization introduces a certain amount of bias compared

to CUE. RRCUE remains comparable to competitors like T2SLS and TLIML in terms of median

bias. In terms of dispersion, RRCUE exhibits substantially lower variance compared to CUE. This

pattern persists as K increases, with RRCUE maintaining a much lower variance, MAD, and nine-

decile range than CUE. Compared to T2SLS and TLIML, RRCUE consistently shows comparable

performance in terms of bias and dispersion as the number of instruments grows.

Panel B - Heteroskedasticity: Under heteroskedastic disturbances, RRCUE continues to demon-

strate strong performance relative to CUE, GMM, HFUL, and HLIM with some exceptions. For

K = 2, RRCUE’s median bias is comparable to that of CUE, GMM, HFUL, and HLIM. Similarly,

RRCUE is almost equivalent to standard competitors in terms of dispersion, denoting again the

fact that regularization is not needed for small K . As K increases, the effect of regularization

is more effective. RRCUE keeps dispersion under control while maintaining a reasonable level

of bias that remains smaller than the GMM over-identification bias. Against HFUL and HLIM,

RRCUE shows clear advantages in terms of dispersion. For example, at K = 30,50, RRCUE sub-

stantially outperforms HFUL and HLIM in terms of dispersion (variance, MAD, and nine-decile

range), while keeping the regularization bias at a manageable level.

Moreover, RRCUE’s rejection frequency remains close to the 5% nominal level in both homoskedas-

tic and heteroskedastic settings, indicating accurate hypothesis testing. In contrast, CUE and

GMM show deteriorating rejection frequencies for larger K , while HFUL and HLIM also deviate

substantially from the nominal level, especially at K = 100 (HFUL = 0.604, HLIM = 0.070).

Table 2 presents results for experiment 1 with nonlinear structural equation (Model 1b). The

results highlight that RRCUE generally performs well compared to CUE and GMM in both ho-

moskedastic and heteroskedastic settings. In terms of bias, RRCUE shows low median bias across

different numbers of moments (K), particularly it maintains comparable or slightly better perfor-

mance than CUE and GMM. Regarding dispersion, RRCUE exhibits smaller variance than CUE,

especially as K increases, while maintaining lower MAD compared to CUE, indicating tighter

concentration around the median. Notably, RRCUE’s Ndr (0.95-0.05) remains relatively stable

across all K values, outperforming CUE and GMM in controlling over-dispersion for larger sets

of moments (K = 30,50, 100), particularly under heteroskedastic disturbances. Finally, in terms

of rejection frequency at the 5% nominal level, RRCUE maintains competitive performance, con-

sistently rejecting less often than GMM, particularly when K is large, which suggests better size

control in finite samples.

Overall, RRCUE demonstrates a balance between bias and dispersion across different num-

bers of instruments and disturbance structures. Results in Tables 1 & 2 reveal that even if a small

number of instruments enter the reduced-form equation, using power series and splines as ad-

ditional instruments, together with regularization, can help improve the efficiency of the CUE

while maintaining the regularization bias at a manageable level if the regularization parameter

is chosen in a suitable manner.
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Table 1: Simulations results: Experiment 1 - Small number of relevant instruments and linear structural equation (Model 1a)

Panel A: Homoskedasticity Panel B: Heteroskedasticity

Estimator RRCUE CUE GMM 2SLS T2SLS LIML TLIML RRCUE CUE GMM HFUL HLIM

K=2 Mean.bias -0.010 -0.010 0.000 0.000 0.000 -0.010 -0.010 -0.008 -0.009 0.010 0.013 0.003

Med.bias 0.002 0.002 0.010 0.010 0.010 0.001 0.001 -0.001 -0.001 0.019 0.021 0.013

Var 0.029 0.029 0.027 0.027 0.027 0.029 0.029 0.072 0.072 0.062 0.057 0.062

MAD 0.106 0.106 0.103 0.102 0.102 0.106 0.106 0.170 0.171 0.158 0.153 0.158

Ndr (0.95-0.05) 0.553 0.556 0.528 0.530 0.529 0.553 0.552 0.870 0.877 0.813 0.779 0.810

0.05 rej.Freq 0.040 0.042 0.047 0.045 0.045 0.041 0.040 0.045 0.046 0.049 0.049 0.046

K=30 Mean.bias 0.048 1.211e+09 0.120 0.143 0.046 -0.014 -0.007 0.046 6.147e+08 0.122 -0.014 -0.048

Med.bias 0.054 0.019 0.122 0.147 0.050 0.004 0.004 0.055 0.014 0.123 0.022 0.012

Var 0.034 6.063e+23 0.017 0.012 0.021 0.838 0.033 0.061 2.078e+23 0.037 0.197 6.672

MAD 0.112 0.186 0.084 0.074 0.095 0.147 0.112 0.148 0.226 0.121 0.205 0.215

Ndr (0.95-0.05) 0.575 1.054 0.419 0.361 0.472 0.839 0.579 0.788 1.343 0.613 1.307 1.510

0.05 rej.Freq 0.054 0.098 0.327 0.281 0.096 0.035 0.041 0.041 0.095 0.285 0.060 0.058

K=50 Mean.bias 0.074 2.870e+09 0.136 0.182 0.061 -5.927e+07 -0.009 0.078 2.651e+10 0.143 -0.005 -3.248

Med.bias 0.080 0.044 0.136 0.182 0.064 0.003 0.005 0.087 0.043 0.142 0.023 0.013

Var 0.031 3.464e+23 0.014 0.009 0.018 3.693e+20 0.033 0.051 1.421e+25 0.034 0.270 6.854e+04

MAD 0.101 0.219 0.077 0.064 0.087 0.173 0.112 0.133 0.266 0.116 0.241 0.255

Ndr (0.95-0.05) 0.525 1.315 0.387 0.311 0.443 1.048 0.582 0.708 1.664 0.593 1.593 2.047

0.05 rej.Freq 0.052 0.145 0.463 0.495 0.106 0.037 0.038 0.041 0.145 0.424 0.065 0.062

K=100 Mean.bias 0.102 -1.806e+09 0.132 0.226 0.096 -2.19e+09 -0.013 0.114 1.016e+09 0.143 0.021 0.019

Med.bias 0.110 0.088 0.131 0.227 0.096 0.008 0.002 0.123 0.093 0.139 0.040 0.027

Var 0.030 1.919e+22 0.012 0.005 0.013 1.451e+23 0.057 0.055 1.054e+23 0.033 0.420 107.265

MAD 0.093 0.239 0.072 0.050 0.075 0.225 0.115 0.120 0.282 0.114 0.303 0.329

Ndr (0.95-0.05) 0.498 1.543 0.356 0.241 0.377 1.694 0.601 0.677 1.821 0.589 2.159 3.250

0.05 rej.Freq 0.061 0.235 0.620 0.864 0.154 0.038 0.038 0.064 0.268 0.604 0.074 0.070

Note: Simulation results based on 10, 000 replications. We report six (06) measures of performance: the mean bias (Mean.bias), the median bias (Med.bias),

the variance of estimates (Var), the median absolute deviation (MAD), the nine decile range ( Ndr(0.95− 0.05)), and the nominal 5% rejection frequency (0.05

rej.Freq) for the Wald test of H0 : β = β0.
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Table 2: Simulations results: Experiment 1 - Small number of relevant instruments and nonlinear
structural equation (Model 1b)

Panel A: Homoskedasticity Panel B: Heteroskedasticity

RRCUE CUE GMM RRCUE CUE GMM

K=2 Mean.bias -0.020 -0.020 -0.014 -0.038 -0.038 -0.033

Med.bias 0.001 0.000 0.007 -0.011 -0.011 -0.004

Var 0.022 0.022 0.021 0.033 0.033 0.032

MAD 0.094 0.094 0.091 0.122 0.122 0.117

Ndr (0.95-0.05) 0.485 0.486 0.476 0.587 0.587 0.585

0.05 rej.Freq 0.128 0.132 0.119 0.205 0.209 0.176

K=30 Mean.bias 0.019 -0.026 0.086 -0.006 -0.041 0.064

Med.bias 0.044 0.011 0.095 0.033 0.003 0.082

Var 0.023 0.041 0.010 0.028 0.037 0.016

MAD 0.092 0.138 0.062 0.101 0.131 0.071

Ndr (0.95-0.05) 0.494 0.644 0.318 0.543 0.606 0.410

0.05 rej.Freq 0.114 0.177 0.329 0.134 0.179 0.284

K=50 Mean.bias 0.045 -0.020 0.103 0.020 -0.045 0.091

Med.bias 0.066 0.030 0.110 0.056 0.011 0.103

Var 0.019 0.054 0.008 0.025 0.046 0.015

MAD 0.081 0.153 0.057 0.090 0.144 0.071

Ndr (0.95-0.05) 0.455 0.737 0.293 0.523 0.677 0.391

0.05 rej.Freq 0.107 0.224 0.455 0.115 0.196 0.407

K=100 Mean.bias 0.072 -0.003 0.106 0.053 -0.043 0.108

Med.bias 0.090 0.065 0.111 0.085 0.034 0.113

Var 0.017 0.078 0.008 0.024 0.073 0.018

MAD 0.071 0.163 0.057 0.076 0.157 0.080

Ndr (0.95-0.05) 0.415 0.873 0.284 0.493 0.814 0.437

0.05 rej.Freq 0.127 0.310 0.614 0.120 0.268 0.597

Note: Simulation results based on 10, 000 replications. We report six (06) measures of performance: the

mean bias (Mean.bias), the median bias (Med.bias), the variance of estimates (Var), the median absolute

deviation (MAD), the nine decile range ( Ndr(0.95 − 0.05)), and the nominal 5% rejection frequency

(0.05 rej.Freq) for the Wald test of H0 : β = β0.

6.2 Experiment 2: Large number of relevant instruments

Our second experiment design involves a large number of relevant instruments in a framework

where both structural and reduced-form models are linear. In particular, we assume that h(x i,β) =
β x i and f (zi) = π′zi, where π is a high-dimensional vector of first-stage coefficients that satisfies

nσ−2
u π
′Σzπ= µ2, with the concentration parameter µ2 measuring the strength of the instruments

and Σz = E
�

ziz
′
i

�

. Following Hansen and Kozbur (2014) we consider Gaussian instruments that

are correlated with one another. Under this Gaussian instrument design, all instruments are

drawn with mean 0 and variance var
�

zi j

�

= Σz j j = 0.3. Dependence between instruments is

given by the Pearson correlation coefficient corr
�

zi j, zik

�

= 0.5| j−k|. As zi is already a large vector,

we consider it as the instrument set without adding power series; that is, qK (zi) = zi. In this
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experiment, we focus on heteroskedastic structural disturbance and consider two different set of

first stage coefficients in the spirit of Donald and Newey (2001) and Carrasco (2012):

(i) Model 2a. πl = d
�

1−
l

K + 1

�4

, for l = 1, . . . , K , where the constant d :=

√

√

√
σ2

uµ
2

nπ̃′Σzπ̃
,

with π̃ = π/d, is chosen so that µ2 = 32. The instruments are ranked in decreasing or-

der of importance. This specification is relevant for applications where there is some prior

information about which instruments are more important.

(ii) Model 2b. πl = d, for l = 1, . . . , K , where the constant d :=

√

√

√
σ2

uµ
2

nι′KΣzιK
, with ιK a K × 1

vector of ones, is chosen so that µ2 = 32. This framework is relevant for applications where

the instruments are equally important.

Table 3 presents results for the case where a large number of instruments enter the reduced-

form equations. In Panel A, which considers the case of instruments ranked in decreasing order

(Model 2a), the performance of RRCUE is generally superior to that of its competitors, particu-

larly CUE and GMM. With a median absolute deviation (MAD) of 0.103 and a variance of 0.027 at

K = 15, RRCUE demonstrates lower dispersion compared to CUE, which exhibits erratic behavior

with a MAD of 0.126 and an excessively high variance. Moreover, RRCUE maintains a favorable

Ndr (0.95-0.05) of 0.529, indicating a balanced performance across different deciles. In terms of

rejection frequency, RRCUE shows a consistent and controlled rejection frequency, which is sig-

nificantly lower than that of GMM, further underscoring its robustness in maintaining type I error

rates. In comparison to HFUL and HLIM, RRCUE exhibits comparable MAD and variance, indi-

cating its competitiveness in terms of dispersion. The same pattern is observed when the number

of instruments increases. We have similar results in Panel B, which evaluates the scenario with

equally important instruments (Model 2b). Overall, RRCUE consistently demonstrates superior

performance in terms of bias (compared to GMM) and dispersion (compared to CUE, HFUL, and

HLIM). Moreover, the role of regularization seems to be much more important when there is a

large number of relevant instruments that enter the reduced-form equation.

In summary, regularization allows solving the moment problem of CUE by reducing its disper-

sion. RRCUE can take advantage of a bunch of moments/instruments and gain efficiency while

maintaining the regularization bias at a relatively low and reasonable level.

7 Empirical application: Institutions and growth

This section revisits the empirical work of Hall and Jones (1999), aiming to answer the famous

question: Why do some countries produce so much more output per worker than others?. This

question is primarily motivated by the simple fact that output per worker varies enormously across

countries. Hall and Jones (1999) argue that the differences in capital accumulation, productivity,

and therefore output per worker are driven by differences in institutions and government policies,

which they call social infrastructure.
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Table 3: Simulations results: Experiment 2 - Large number of relevant instruments and heteroskedastic structural disturbance

Panel A: Instruments ranked in decreasing order (Model 2a) Panel B: Instruments are equally important (Model 2b)

Estimator RRCUE CUE GMM HFUL HLIM RRCUE CUE GMM HFUL HLIM

K=15 Mean.bias 0.024 2.494e+10 0.102 0.003 -0.005 0.014 -1.23e+10 0.087 -0.002 -0.018
Med.bias 0.030 0.003 0.106 0.014 0.005 0.023 0.001 0.091 0.010 0.001
Var 0.027 4.577e+24 0.013 0.033 0.319 0.021 1.509e+24 0.011 0.029 0.224
MAD 0.103 0.126 0.077 0.110 0.115 0.091 0.106 0.070 0.099 0.103
Ndr (0.95-0.05) 0.529 0.685 0.375 0.585 0.621 0.470 0.579 0.350 0.528 0.564
0.05 rej.Freq 0.042 0.049 0.215 0.052 0.049 0.038 0.043 0.192 0.050 0.046

K=30 Mean.bias 0.054 1.033e+11 0.144 -0.002 -0.022 0.044 -3.576e+10 0.135 -0.006 -0.071
Med.bias 0.057 0.006 0.145 0.009 -0.000 0.047 0.005 0.136 0.011 0.001
Var 0.022 2.760e+25 0.009 0.042 0.196 0.020 7.573e+24 0.008 0.039 10.418
MAD 0.095 0.141 0.062 0.117 0.123 0.088 0.123 0.058 0.111 0.116
Ndr (0.95-0.05) 0.481 0.800 0.307 0.643 0.692 0.456 0.724 0.291 0.618 0.674
0.05 rej.Freq 0.046 0.056 0.449 0.052 0.048 0.043 0.048 0.426 0.054 0.050

K=50 Mean.bias 0.099 1.318e+10 0.174 -0.006 0.051 0.091 2.973e+10 0.168 -0.010 -0.095
Med.bias 0.097 0.015 0.174 0.011 0.001 0.090 0.013 0.168 0.011 0.001
Var 0.018 7.978e+25 0.006 0.065 137.613 0.015 5.630e+25 0.006 0.059 31.513
MAD 0.079 0.162 0.051 0.131 0.138 0.075 0.151 0.050 0.126 0.133
Ndr (0.95-0.05) 0.410 1.025 0.256 0.754 0.839 0.391 0.948 0.250 0.732 0.815
0.05 rej.Freq 0.054 0.072 0.716 0.052 0.049 0.051 0.068 0.701 0.050 0.047

K=100 Mean.bias 0.160 -1.969e+10 0.207 -0.000 -0.531 0.157 5.229e+09 0.204 -0.001 -0.004
Med.bias 0.161 0.073 0.207 0.020 0.008 0.155 0.065 0.205 0.018 0.006
Var 0.010 5.630e+25 0.004 0.122 1.258e+03 0.009 1.749e+25 0.004 0.121 60.889
MAD 0.064 0.199 0.041 0.167 0.177 0.063 0.193 0.041 0.167 0.177
Ndr (0.95-0.05) 0.317 1.297 0.203 1.072 1.288 0.308 1.286 0.200 1.051 1.265
0.05 rej.Freq 0.095 0.138 0.965 0.067 0.062 0.090 0.128 0.965 0.065 0.061

Note: Simulation results based on 10, 000 replications. We report six (06) measures of performance: the mean bias (Mean.bias), the median bias (Med.bias),
the variance of estimates (Var), the median absolute deviation (MAD), the nine decile range ( Ndr(0.95− 0.05)), and the nominal 5% rejection frequency (0.05
rej.Freq) for the Wald test of H0 : β = β0.
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To quantify the effect of social infrastructure on per capita income, they treat social infras-

tructure as endogenous. Identification is then based on the idea that social infrastructure is de-

termined historically by location and other factors captured in part by language, all of which are

exogenous. More precisely, they use 2SLS with four instruments for social infrastructure: the frac-

tion of population speaking English at birth (EnL), the fraction of population speaking one of the

five major European languages at birth (EuL), the distance from the equator (latitude, Lt ), and

Frankel and Romer (1999) geography-predicted trade intensity (FR). The linear IV regression

model is given by

yi = c +δSi + ϵi i = 1, 2 . . . , n= 79,

where yi is country i’s log income per capita, Si is country i’s proxy for social infrastructure, c is

a constant, and δ is the scalar parameter of interest.

The baseline n×4 matrix of instruments is given by z = [EnL, EuL, Lt, FR]. Recently, Dmitriev

(2013) pointed out that these instruments are weak. To boost their identification strength, we

increase the set of instruments from 4 to 18, as suggested by Carrasco and Tchuente (2016)8.

Our enriched set of instruments is given by9

q(z) =
�

z, z.2, z.3, z(:, 1)× z(:, 2), z(:, 1)× z(:, 3), z(:, 1)× z(:, 4),

z(:, 2)× z(:, 3), z(:, 2)× z(:, 4), z(:, 3)× z(:, 4)] ,

where all instruments are divided by their standard deviation prior to regularization. Our sample

consists of n= 79 countries for which no data were imputed10. Results are collected in Table 4.

Table 4 presents estimates of the effect of social infrastructure on growth using various esti-

mators for two different numbers of instruments: K = 4 (benchmark) and K = 18 (many instru-

ments). Across the estimators, RRCUE demonstrates a notable balance between the size of the

estimates and the precision, particularly in the case of K = 18. For K = 4, RRCUE produces an

estimate of 5.704, comparable to LIML and HLIM, but with a standard error of 1.059, which is

slightly higher than other methods and might denote the fact that regularization is not needed in

this low-dimensional case. However, as the number of instruments increases to K = 18, RRCUE

achieves a precise estimate of 4.813 with a relatively low standard error of 0.639, maintaining

stability in the presence of many instruments.

Compared to other estimators, RRCUE performs robustly with many instruments, showing su-

perior precision compared to LIML, HLIM, and HFUL, which all experience substantial increases

in standard errors. For instance, HLIM and HFUL report estimates of 6.828 and 6.561, respec-

tively, but with much larger standard errors (1.610 and 1.497), indicating less precision which

is consistent with the simulation results. In contrast, RRCUE’s regularized approach effectively

controls for many instruments, offering both a reasonable estimate and greater reliability, making

it a competitive choice for empirical analysis in such settings.

8Carrasco and Tchuente (2016) argued that the use of many instruments allows the concentration parameter to
increase from µ̂2

n = 28.6 for 4 instruments to µ̂2
n = 51.48 for 18 instruments, resulting in a moderately strong set of

instruments.
9z.k =

�

zk
i j

�

, z(:, j) is the j th column of z, and z(:, j)× z(:, l) is a vector of interactions between columns j and l.
10Data used are collected from https://web.stanford.edu/~chadj/HallJones400.asc.
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Table 4: Estimates of the effect of social infrastructure on growth (NW09 variance)

OLS 2SLS LIML GMM CUE HLIM HFUL T2SLS TLIML RRCUE

K = 4 3.074 5.412 5.938 5.367 5.728 5.982 5.812 5.628 5.958 5.704

(0.296) (0.777) (1.012) (0.695) (1.017) (0.936) (0.874) (0.807) (0.948) (1.059)

α= 0.500 α= 0.500 α= 0.025

K = 18 3.074 3.986 6.093 3.603 4.764 6.828 6.561 4.438 5.523 4.813

(0.296) (0.427) (1.597) (0.169) (0.778) (1.610) (1.497) (0.507) (1.002) (0.639)

α= 0.020 α= 0.010 α= 0.012

Note: The sample consists of n = 79 countries for which no data were imputed. We present results for both K = 4

instruments (benchmark) and for many instruments (K = 18), as well as for alternative estimators for comparison

purposes. Standard errors are in parentheses. For CUE with 18 instruments, we report the many instruments robust

standard error of Newey and Windmeijer (2009), and for RRCUE, we report its regularized counterpart.

8 Conlusion

This paper introduces the Ridge-regularized Continuous Updating Estimator (RRCUE) to address

the challenges posed by using a large number of instruments/moments to improve efficiency

in moment-based estimation in a framework where the parameter of interest is defined by a

single conditional moment restriction. Through theoretical analysis and Monte Carlo simulations,

we demonstrate that RRCUE offers a significant reduction in dispersion and improves efficiency

compared to standard CUE. Despite introducing a small bias, the estimator remains robust in high-

dimensional settings where the number of moments increases with the sample size, providing

consistent and precise estimates. We show that RRCUE is competitive and sometimes outperforms

state-of-the-art estimators like HLIM and HFUL of Hausman et al. (2012), specifically in the linear

instrumental variable framework with heteroskedasticity and many instruments. These findings

make RRCUE a promising tool for empirical research, particularly in econometric applications

where a large set of instruments/moments is available and there is either no rule to select a

subset of them or they have almost the same explanatory power. Promising future research may

explore the extension of our regularization scheme to the generalized empirical likelihood (GEL)

class of estimators. This research path is particularly interesting as Newey and Smith (2004)

justified that the empirical likelihood (EL) estimator enjoys good performance in terms of higher-

order bias within the GEL class. Therefore, EL estimator might be a good candidate to address

overidentification bias in the many moments setting. Further promising future work includes the

investigation of higher-order expansion to derive an approximate mean squared error for optimal

selection of the regularization parameter, as suggested by Carrasco (2012) and Carrasco and

Tchuente (2015).
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Appendix

Throughout the Appendix, C will denote a generic positive constant that may be different in

different uses, and M, CS and T the Markov, Cauchy-Schwarz and triangle inequalities respectively.

Also, with probability approaching one will be abbreviated as w.p.a.1., p.d. and p.s.d. will be the

abbreviation for positive definite and positive semidefinite matrix respectively, and CLT will refer

to the Lindeberg-Lévy central limit theorem.

Proof of Theorem 3.1. By s(v) quadratic, a second order Taylor expansion is correct giving

bP(β ,λ) =
n
∑

i=1

s
�

λ′gi(β)
�

/n−
α

2
λ′λ

=
1
n

n
∑

i=1

§

s(0) + s′(0)λ′gi(β) +
s′′(0)

2

�

λ′gi(β)
�2
ª

−
α

2
λ′λ

= − ĝ(β)′λ−
1
2
λ′Ω̂(β)λ−

α

2
λ′λ

= − ĝ(β)′λ−
1
2
λ′
�

Ω̂(β) +αIK

�

λ.

By concavity of bP(β ,λ) in λ, any solution λ̂ (β) to the FOCs 0= ĝ(β)+(bΩ(β)+αI)λwill max-

imize bP(β ,λ) with respect to λ holding β fixed. That is λ̂(β) = −
�

Ω̂(β) +αI
�−1

ĝ(β) maximizes
bP(β ,λ) holding holding β fixed. Then the penalized GEL objective function is given by

bP
�

β , λ̂ (β)
�

=
1
2

ĝ(β)′
�

Ω̂(β) +αIK

�−1
ĝ(β).

Therefore, the penalized GEL objective function is a monotonic increasing transformation of the

regularized CUE objective function so that the result follows.

Proof of Theorem 3.2. As justified in the proof of Theorem 3.1, λ̂(β) = −
�

Ω̂(β) +αI
�−1

ĝ(β)
maximizes bP(β ,λ) holding β fixed.

By the envelope theorem, the FOCs for the regularized CUE β̂ are given by

0=
∂ bP(β ,λ(β))

∂ β

�

�

�

�

β=β̂

=
∂ bP(β ,λ)
∂ β

�

�

�

�

λ=λ̂(β), β=β̂

= n−1
n
∑

i=1

s1

�

λ′gi(β)
�

Gi(β)
′λ

�

�

�

�

�

λ=λ̂(β), β=β̂

= n−1
n
∑

i=1

s1 (v̂i)Gi

�

β̂
�′
λ̂,

where v̂i = λ̂ ĝi. Multiplying by −n
�∑n

i=1 s1 (v̂i)
�−1

and using λ̂= −
�

Ω̂
�

β̂
�

+αI
�−1

ĝ
�

β̂
�

give the

result.
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We now give some preliminary lemmas for the proof of Theorem 4.1 and of Theorem 4.2.

The proof of Theorem 4.1 will be based on the following lemma, borrowed from DNI03, with

suitable choices of functions R̂(β) and R(β). The proof of this lemma can be found in the DIN03’s

Appendix.

Lemma 1. (Lemma A1 of Donald et al. (2003)) Suppose that (i) R(β) has a unique minimum at
β0 ∈ B; (ii) B is compact; (iii) R(β) is continuous; and (iv) supβ∈B |R̂(β)− R(β)|

p
→ 0. Then for

any β̃ ∈B , if R̂(β̃)
p
→ R (β0) then β̃

p
−→ β0.

Lemma 2. If Assumption 1(a) is satisfied and σ(z)2
de f
= E

�

ρ(w,β0)2|z
�

is bounded then ∥ ĝ(β0)∥=
Op(n−1/2)

Proof. Let qi = q̃K(zi) = qK(zi)/ζ(K) and ρi = ρ(wi,β). By Assumption 1(a) sup
β∈B



q̃K(z)


≤ C so

that E
�

∥qi∥
2
�

= O (1). It follows from i.i.d. data and the law of iterated expectations that

E
�

∥ ĝ (β0)∥
2
�

= E















1
n

n
∑

i=1

qiρi











2




= E

�

1
n2

∑

i, j

(qiρi)
′ �q jρ j

�

�

= E
�

ρ2
i ∥qi∥2

�

/n

= E
�

E
�

ρ2
i |zi

�

∥qi∥
2
�

/n

= E
�

σ2
i ∥qi∥

2
�

/n≤ C/n.

The conclusion then follows by M.

Lemma 3. If Assumption 1(a) is satisfied, Ui
de f
= U(zi) a nonnegative scalar function bounded away

from zero, Pi = qiU
1/2
i , P = [P1, · · · , Pn]

′, Qα = P [P ′P/n+αI]−1 P ′/n with α > 0, and
�

λ j,φ j : j = 1, 2, . . . , K
�

the eigenvalues and orthonormal eigenvectors E
�

Uiqiq
′
i

�

then

(i) tr (E [Qα]) = O(1/α);

(ii) For all x and y, x ′Qα y ≤ ∥x∥∥y∥ so that λmax (Qα)≤ 1;

(iii) x ′ (I −Qα)2 x ≤ x ′ (I −Qα) x for all x;

(iv) If x̄ is an n-dimensional vector such that ∥ x̄∥/
p

n= Op(1), for eack K there is a K-dimensional
vector γK such that ∥ x̄ − PγK∥/

p
n= op(1), and there is β ≥ 1/2 such that

∞
∑

j=1

�

E [ x̄ i Pi]
′φ j

�2

λ
2β+1
j

<∞,

then x̄ ′ (I −Qα) x̄/n
p
→ 0 as n→∞ and α→ 0.
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Proof. To prove (i) remark that P ′P/n+αI ⩾ αI so that (P ′P/n+αI)−1 P ′P ⩽ P ′P/α and there-

fore tr (Qα)⩽ tr (P ′P)/(nα). Also, note that P ′P =
∑n

i=1 Uiqiq
′
i so that tr (P ′P)/n= n−1

∑n
i=1 Ui tr

�

qiq
′
i

�

⩽
Cn−1

∑n
i=1 ∥qi∥

2 ≤ C by U(z) bounded and Assumption 1(a).

To prove (ii) we make use of singular value decomposition (SVD). Recall that Tn = P/
p

n is

an n × K matrix. Let Tn = Ψ̂DbΦ denotes its SVD, where Ψ̂ is an n × n orthogonal matrix, D is

an n × K rectangular diagonal matrix with nonnegative real numbers on the diagonal, bΦ is an

K × K matrix. Let
q

λ̂i = Dii denote the diagonal entries of D known as singular values of P.

The number of nonzero singular values is equal to the rank r of P. The columns of bΨ and bΦ form

two sets of orthonormal bases ψ̂1, . . . , ψ̂n and φ̂1, . . . , φ̂K . If singular values
q

λ̂i are sorted in

decreasing order such that
q

λ̂1 ≥
q

λ̂2 ≥ · · · ≥
q

λ̂r >
q

λ̂r+1 = 0 then the SVD can be written

as Tn =
∑r

i=1

q

λ̂iψ̂iφ̂
′
i , where r ⩽min(n, K). It follows that for all j = 1, . . . , K , T ′nTnφ̂ j = λ̂ jφ̂ j so

that
�

λ̂ j, φ̂ j : j = 1,2, . . . , K
�

is the system of eigenvalues and orthonormal eigenvectors of T ′nTn.

Since T ′nTn is the sample counterpart of L = E
�

Uiqiq
′
i

�

, then λ̂ j and φ̂ j are consistent estimators

of the corresponding eigenvalues and eigenvectors of L, λ j and φ j.

Also, note that Qα = Tn

�

T ′nTn +αI
�−1

T ′n =
∑n

j=1
λ̂ j

λ̂ j+α
ψ̂ jψ̂

′
j with λ̂ j = 0 for all j > r. (ψ̂1, . . . , ψ̂n)

being an orthonormal basis Qαψ̂ j =
λ̂ j

λ̂ j+α
ψ̂ j for all j = 1, . . . , n. It follows that eigenvalues of Qα

are
λ̂ j

λ̂ j+α
for j = 1, . . . , n and the associated eigenvectors are respectively ψ̂ j, j = 1, . . . , n. There-

fore λmax (Qα)⩽ 1 so that for all vectors x and y , x ′Qα y ≤ λmax (Qα)∥x∥∥y∥ ≤ ∥x∥∥y∥.
To prove (iii) note that I −Qα =

∑n
j=1

α

λ̂ j+α
ψ̂ jψ̂

′
j so that λmax (I −Qα) ≤ 1. Also, for α > 0,

I −Qα is a symmetric positive semidefinite matrix. Let (I −Qα)1/2 be a symmetric square root of

I −Qα. Then,

x ′ (I −Qα)2 x = x ′ (I −Qα)1/2 (I −Qα) (I −Qα)1/2 x ⩽


(I −Qα)1/2 x




2
= x ′ (I −Qα) x ,

giving the result.

It remains to prove (iv). Note that for α= 0, Qα coincide with Q
de f
= P(P ′P)−P ′ =

∑r
j=1 ψ̂ jψ̂

′
j,

where (·)− is the Moore-Penrose generalized inverse. By definition, I − Q is idempotent and

satisfied QP = P so that

x̄ ′ (I −Q) x̄/n= ( x̄ − PγK)
′ (I −Q) ( x̄ − PγK)/n⩽

∥ x̄ − PγK∥
2

n
p
−→ 0.

Also, by β ≥ 1/2, the function λ2β/(α+λ) is increasing in λ and reaches it maximum for the max-

imal eigenvalue (which is bounded by tr(P ′P)/n ≤ C) an therefore supλλ
2β/(α+λ2) ≤ C . Also,

by the SVD, ψ̂ j = Tnφ̂ j/
Æ

λ j =
1

Ç

λ̂ j

�

P ′1φ̂ j, · · · , P ′nφ̂ j

�′ �p
n so that

�

x̄ ′ψ̂ j

�2
=
p

n
λ̂ j

�

Ê [ x̄ i Pi]
′ φ̂ j

�2
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where Ê [ x̄ i Pi] =
∑n

i=1 x̄ i Pi/n. It follows by Q−Qα =
∑r

j=1
α

λ̂ j+α
ψ̂ jψ̂

′
j that

x̄ ′ (Q−Qα) x̄/n=
r
∑

j=1

α

α+ λ̂ j

�

x̄ ′ψ̂ j

�2
/n

=
r
∑
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αλ̂
2β
j

α+ λ̂ j

�

Ê [ x̄ i Pi]
′ φ̂ j

�2

λ̂
2β+1
j

⩽ sup
λ

�

αλ2β

α+λ

� r
∑

j=1

�

Ê [ x̄ i Pi]
′ φ̂ j

�2

λ̂
2β+1
j

≤ Cα
r
∑

j=1

�

Ê [ x̄ i Pi]
′ φ̂ j

�2

λ̂
2β+1
j

. (A.15)

At the limit, the sum in (A.15) is finite by hypothesis in the statement of Lemma 3 so that

x̄ ′ (Q−Qα) x̄/n= Op(α). It follows that x̄ ′ (I −Qα) x̄/n= x̄ ′ (I −Q) x̄/n+ x̂ ′ (Q−Qα) x̄/n
p
→ 0 as

n→∞ and α→ 0, giving the conclusion in (iv).

Lemma 4. If Assumption 1 is satisfied, (i) β̂
p
→ β̄ , (ii) ai(β)

de f
= a

�

wi,,β
�

and bi(β)
de f
= b (wi,β)

are scalar functions that are continuous at β̄ w.p.1 and there is a neighborhood N of β̄ such
that E

�

supβ∈N |ai(β)|
2
�

<∞ and E
�

supβ∈N |bi(β)|
2
�

<∞, E
�

ai(β̄)2|zi

�

and E
�

bi(β̄)2|zi

�

are

bounded; (iii) Ui
de f
= U(zi) is a nonnegative scalar function bounded away from zero; (iv) K →∞,

α→ 0, and nα→∞ as n→∞, then

bΛα
de f
=

�

1
n

n
∑

i=1

ai(β̂)qi

�′�
1
n

n
∑

i=1

Uiqiq
′
i +αI

�−1�

1
n

n
∑

i=1

bi(β̂)qi

�

p
−→ Λ,

where Λ
de f
= E

�

E
�

ai(β̄)|zi

�

U−1
i E

�

bi(β̄)|zi

��

.

Proof. Let Pi = qiU
1/2
i , P = [P1, . . . , Pn]

′, Ai(β) = U−1/2
i ai(β), A(β) = [A1(β), · · · , An(β)]

′, Â =
A(β̂), A = A(β̄), Bi(β) = U−1/2

i bi(β), B(β) = [B1(β), . . . , Bn(β)]
′, and B̂ = B(β̂), and B = B(β̄).

Note that
∑n

i=1 Uiqiq
′
i = P ′P,

∑n
i=1 ai(β̂)q′i = Â′P, and

∑n
i=1 bi(β̂)qi = PB̂ so that for Qα =

P (P ′P/n+αI) P ′/n, Λ̂α = Â′P (P ′P/n+αI)−1 P ′B̂/n2 = Â′QαB̂/n.

Let∆(w,β) = U(z)−1[b(w,β)−b(w, β̄)]2. By hypothesis in the statement of Lemma 4,∆(w,β)
is continuous with respect β in a neighborhood N of β̄ . Moreover, E

�

supβ∈N |∆(w,β)|
�

≤
C E

�

supβ∈N |b(w,β)|2
�

< ∞. It follows by Lemma 4.3 of Newey and McFadden (1994) with

a(z,θ ) there equal to ∆(w,β) that ∥B̂−B∥2/n=
∑n

i=1∆
�

ωi, β̂
�

/n
p
−→ E

�

∆
�

ωi, β̄
��

= 0. There-

fore by Lemma 3(ii)

T̂αB
de f
= (B̂ − B)′Qα(B̂ − B)/n⩽ λmax (Q

α)∥B̂ − B∥2/n≤ ∥B̂ − B∥2/n
p
→ 0.

For Z = [z1, · · · , zn]
′, let ai = ai(β̄), āi = E [ai|zi], and note that Ā

def
=

E[A|Z] =
�

U−1/2
1 ā1, · · · , U−1/2

n ān

�′
. Note that from i.i.d. observations,

E
�

(A− Ā)(A− Ā)′|Z
�

= Diag
�

U−1
1 V [a1|z1] , · · · , U−1

n V [an|zn]
�

≤ C I ,
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by E
�

|ai|
2 |zi

�

bounded and Ui bounded away from zero.

Let Σ be the Cholesky factor of the symmetric and positive definite matrix (P ′P +αI)−1. Then

Qα = PΣ′ΣP. By the law of iterated expectations and Lemma 3(i) it follows for eTαA
de f
= (A−Ā)′Qα(A−

Ā)/n that
E
�

eTαA
�

= tr E
�

E
�

eTαA |Z
��

= E
�

E
�

tr
�

(A− Ā)(A− Ā)′Qα
�

|Z
�� �

n

= E
�

tr
�

ΣP ′E
�

(A− Ā)(A− Ā)′|Z
�

PΣ′
�� �

n

≤ C E
�

tr
�

ΣP ′PΣ′
�� �

n

≤ C E
�

tr
�

PΣ′ΣP ′
��

/n

≤ C E [tr (Qα)]/n≤ C/(nα)→ 0 as n→∞.

It then follows by M that eTαA
p
−→ 0. Also the same result holds for eTαB .

By Assumption 1(b) there exists a K × 1 vector, γK such that E
�

�

U−1
i āi − q′iγK

	2�

→ 0 as

K →∞. Then by M

∥Ā− PγK∥2/n=
n
∑

i=1

�

�

�U−1/2
i āi − P ′i γK

�

�

�

2
�

n

=
n
∑

i=1

U1/2
i

�

�U−1
i āi − q′iγK

�

�

2 �
n

≤ C
n
∑

i=1

�

�U−1
i āi − q′iγK

�

�

2 �
n

p
→ 0 as n, K →∞.

Also by M Ā′Ā/n = Op(1). By Assumption 1(c), hypothesis in Lemma 3 is satisfied for x̄ = Ā

so that part (iv) of Lemma 3 gives T̄αA
de f
= Ā′ (I −Qα) Ā/n

p
−→ 0. The analogous result holds for B

replacing A.

Next note that by CS

TαA
de f
= (Â− Ā)′Qα(Â− Ā) = (Â− A+ A− Ā)′Qα(Â− A+ A− Ā)

≤ bTαA + T̃αA + 2
q

T̂αA
q

T̃αA
p
−→ 0.

Then by CS and T,

|Â′QαB̂/n− Ā′B̄/n|=|(Â− Ā)′Qα(B̂ − B̄) + (Â− Ā)′QαB̄ + Ā′Qα(B̂ − B̄)− Ā′ (I −Qα) B̄|/n

≤
Æ

TαA
Æ

TαB +
Æ

TαA
Æ

B̄′B̄/n+
Æ

Ā′Ā/n
Æ

TαA +
q

T̄αA
q

T̄αB
p
−→ 0.

Nothing that Ā′B̄/n =
∑n

i=1 āiU
−1
i b̄i/n the conclusion follows by the standard law of large

numbers.

In the sequel we will use the following notations

R̂(β) = ĝ(β)′W̃ ĝ(β), R(β) = E
�

(E [ρ(w,β)|z])2
�

, (A.16)

where fWα =
�

bA+αI
�−1

, Â=
∑n

i=1 qiq
′
i/n, and qi = qK(zi)/ζ(K).
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Lemma 5. If Assumptions 1 and 2(a)-(c) are satisfied, K →∞, α→ 0, and nα→∞ as n→∞,

then R(β) has a unique minimun at β0, R(β) is continuous onB and supβ∈B |R̂(β)− R(β)|
p
→ 0.

Proof. For any β ̸= β0 it follows by Assumption 2(a) that E[ρ(w,β)|z] ̸= 0 so that R(β) =
E
�

(E[ρ(w,β)|z])2
�

> 0= R (β0) giving the first result.

To show the continuity of R(β), note that by Assumption 2(c), for all β , β̃ ∈B

�

�R(β̃)− R(β)
�

�=
�

�

�E
�

�

E[ρ(w, β̃)|z]
�2
− (E[ρ(w,β)|z])2

�

�

�

�

≤ E
�

(E[ρ(w, β̃)−ρ(w,β)|z])2
�

≤ E
�

E
�

�

ρ(w, β̃)−ρ(w,β)
�2 �
�z
��

⩽ E
�

�

ρ(w, β̃)−ρ(w,β)
�2�

⩽ C E
�

δ1(w)
2
�

∥β̃ − β∥2r

≤ C∥β̃ − β∥2r .

Therefore R(β) is continuous being uniformly continuous.

To obtain the last conclusion, supβ∈B |R̂(β)−R(β)|
P
−→ 0, it suffices, by Corollary 2.2 of Newey

(1991), to show that: (i) B is compact (it is the case by Assumption 2(b)); (ii) bR(β)
p
−→ R(β)

for all β ∈B; and (iii) there is D̂ = Op(1) with
�

�R̂(β̃)− R̂(β)
�

�≤ D̂∥β̃ − β∥r for all β , β̃ ∈B .

To show (ii), apply Lemma 4 with a(w,β) = b(w,β) = ρ(w,β) and U(z) = 1 with β fixed.

Hypothesis in the statement of Lemma 4 are satisfied by Assumption 2(c). The conclusion of

Lemma 4 implies that bR(β)
p
−→ R(β) for all β ∈B giving (ii).

To show (iii), let ρ = (ρ1, . . . ,ρn)
′ and ρ̃ = (ρ̃1, . . . , ρ̃n) with ρi = ρ (wi,β) and ρ̃i =

ρ
�

ωi, β̃
�

. Also, note that R̂(β) = ρ′Qαρ/n where Qα is defined as in the statement of Lemma 3

for Ui = 1. It follows by Lemma 3(ii) and by CS that

�

�R̂(β̃)− R̂(β)
�

�=
�

�ρ̃′Qαρ̃ −ρ′Qαρ
�

�

�

n

=
�

�(ρ̃ −ρ)′Qαρ̃ +ρ′Qα(ρ̃ −ρ)
�

�

�

n

≤ λmax (Q
α)∥ρ̃ −ρ∥(∥ρ̃∥+ ∥ρ∥)

�

n

⩽ ∥ρ̃ −ρ∥(∥ρ̃∥+ ∥ρ∥)
�

n.

Note by Assumption 2(c) and M that n−1/2∥ρ̃−ρ∥=
�∑n

i=1 (ρ̃i −ρi)
2 /n

�1/2
≤ D̂δ1
∥β̃−β∥r , where

D̂δ1
=
�∑n

i=1δ1 (wi)
2 /n

�1/2
= Op(1). Also, for any fixed β̄ ∈B , by Assumption 2(b),

sup
β∈B
|ρ (wi,β)|

�p
n≤ sup

β∈B

�

�ρ (wi,β)−ρ
�

wi, β̄
��

�/
p

n+ D̄

≤ D̂δ1
sup
β∈B
∥β − β̄∥r + D̄ ≤ C D̂δ1

+ D̄,

where D̄ =
�

∑n
i=1ρ

�

wi, β̄
�2
/n
�1/2
= Op(1) by Assumption 2(c) and M. Therefore

�

�R̂(β̃)− R̂(β)
�

�≤
D̂∥β̃ − β∥r , where D̂ = 2D̂δ1

�

C D̂δ1
+ D̄

�

= Op(1), giving (iii).

Lemma 6. If Assumptions 1(a) and 2(f) are satisfied, for Λn = {λ : ∥λ∥ ≤ δn} , where δn is a
sequence of nonnegative real numbers such that δnn1/γ → 0 as n goes to infinity, then we have
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max
β∈B ,λ∈Λn

1≤i≤n

|λ′gi(β)|
p
−→ 0 and w.p.a.1, Λn ⊆ Λ̂(β) for all β ∈B .

Proof. Let bi = supβ∈B |ρ (wi,β)|. By Assumption 2(f), E
�

bγi
�

< C . If follows by M that

max
1≤i≤n

bi =
n

max
i

bγi

o1/γ
≤

¨

n
∑

i=1

bγi

«1/γ

= n1/γ

¨

n
∑

i=1

bγi /n

«1/γ

≤ n1/γOp

�

�

E
�

bγi
�	1/γ�

= Op

�

n1/γ
�

.

It then follows by Assumption 1(a) that

Xn
de f
= max

β∈B ,λ∈Λn
1≤i≤n

�

�λ′gi(β)
�

�= max
β∈B ,λ∈Λn

1≤i≤n

�

�λ′qiρ(wi,β)
�

�≤ δn max
1≤i≤n

bi = δnOp

�

n1/γ
� p
→ 0,

giving the first conclusion.

Also, since V is a neighborhood of 0, by the first conclusion Xn ∈ V w.p.a.1. Equivalently,

|λ′gi(β)| ∈ V for all β ∈ B , λ ∈ Λn, and i = 1, . . . , n. It follows that Λn ⊆ Λ̂(β) for all β ∈ B ,

giving the second conclusion.

Lemma 7. If Assumptions 1(a) and 2(f) are satisfied, δn a sequence of nonnegative real num-
bers such that δnn1/γ → 0, an a sequence of real numbers such that αδnan → ∞ as n goes to
infinity, β̃ an estimator of β0 with



 ĝ
�

β̃
�

 = Op

�

a−1
n

�

then supλ∈Λ̂(β̃) P̂(β̃ ,λ) = Op

�

α−1a−2
n

�

,

λ̃= argminλ∈Λ̂(β̃) P̂(β̃ ,λ) exists w.p.a.1 and


λ̃


= Op

�

α−1a−1
n

�

.

Proof. Let g̃ = ĝ(β̃) and Ω̃ = Ω̂(β̃). Also let Λn be as defined in Lemma 6. It is obvious that

P̂(β ,λ) is twice continuously differentiable on Λn (as it is a quadratic function of λ). Then by

compacity of Λn, λ̄
de f
= argmax

λ∈Λn

P̂(β̃ ,λ) exists. Furthermore, by λmin

�

Ω̃+αI
�

≥ α, the following

inequalities hold

0= P̂
�

β̃ , 0
�

≤ P̂
�

β̃ , λ̄
�

= −λ̄′ g̃ −
1
2
λ̄′
�

Ω̃+αI
�

λ̄≤


λ̄


∥ g̃∥ −αC


λ̄




2
. (A.17)

Adding αC


λ̄




2
from both sides and dividing by C



λ̄


 we find that α


λ̄


 ⩽ C ∥ g̃∥ . Then

by the hypothesis in the statement of Lemma 7,


λ̄


 = Op

�

α−1a−1
n

�

= δnOp

�

α−1δ−1
n a−1

n

�

=
δnop(1). Therefore limn→∞ P

�

λ̄


< δn

�

= 1 and then λ̄ ∈ int (Λn) w.p.a.1. It follows that

λ̄ = argmax
λ∈Λn

P̂(β̃ ,λ) satisfies the first order conditions, ∂ P̂
�

β̃ ,λ
�

/∂ λ
�

�

λ=λ̄ = 0. By Lemma 6

λ̄ ∈ Λn ⊆ Λ̂(β̃) w.p.a.1. Then by concavity of P̂
�

β̃ ,λ
�

with respect of λ, and convexity of Λ̂(β̃) it

follows that P̂
�

β̃ , λ̄
�

=maxλ∈bΛ(β̃) P̂(β̃ ,λ), giving the second and the third conclusions with λ̃= λ̄.

The last inequality of Eq. (A.17) gives

P̂
�

β̃ , λ̃
�

≤


λ̃


∥ g̃∥ −αC∥λ̃∥2 ⩽ Op

�

1
αan

�

Op

�

1
an

�

−αOp

�

1
α2a2

n

�

= Op

�

α−1a−2
n

�

,

giving the first result.

Lemma 8. If Assumptions 1(a) and 2(f) are satisfied, αn1/2−1/γ−ϵ →∞ as n→∞, where ϵ > 0

is such that 1/2 − 1/γ − ϵ > 0, then for any λ̄ ∈ Λ̂
�

β̂
�

it is the case that w.p.a.1 P̂
�

β̂ , λ̄
�

⩽
supλ∈Λ̂(β̂) P̂

�

β̂ ,λ
�

= Op

�

α−1n−1
�

.
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Proof. The inequality is obvious by the fact that λ̄ ∈ Λ̂
�

β̂
�

. Let an = n1/2, then ∥ ĝ (β0)∥= Op

�

a−1
n

�

by Lemma 2. For δn = n−1/γ−ϵ, δnn1/γ = n−ϵ → 0, and αδnan = αn1/2−1/γ−ϵ →∞, so that the

hypotheses in the statement of Lemma 7 is satisfied for β̃ = β0. The conclusion of Lemma 7 gives

supλ∈Λ̂(β0) P̂ (β0,λ) = Op

�

α−1n−1
�

. By Theorem 3.1,

sup
λ∈Λ̂(β̂)

P̂(β̂ ,λ)≤ sup
λ∈Λ̂(β0)

P̂ (β0,λ) = Op

�

α−1n−1
�

,

giving the second result.

We need the following notations for the next result. Let gi = gi (β0), Ω = E
�

gi g
′
i

�

, Ω̂(β) =
∑n

i=1 gi(β)gi(β)′/n, Ω̂= Ω̂(β̂), Ω̃=
∑n

i=1 gi g
′
i/n and Ω̄= n−1

∑n
i=1σ

2
i qiq

′
i.

Lemma 9. If Assumptions 1(a) and 2(b)-(e) are satisfied then for any β̂ ∈B

(i) If α→ 0 as n→ 0 then for n large enough λmax

�

Ω̂+αI
�

≤ C w.p.a.1;

(ii) If β̂ = β0 +Op (τn) with τn→ 0, then



Ω̂− Ω̃


= Op (τn) ,


Ω̃− Ω̄


= Op

�

n−1/2
�

, and


Ω̄−Ω


= Op

�

n−1/2
�

.

Moreover λmax (Ω) ≤ C and w.p.a.1 λmax

�

Ω̄
�

≤ C , and λmax

�

Ω̂
�

≤ C . If in addition


λ̃


 =
Op (κn) then for Ω̌= −

∑n
i=1 s1

�

λ̃′gi

�

gi g
′
i/n, we have



Ω̌− Ω̄


= Op

�

κn +τn + n−1/2
�

.

Proof. Let ρ̂i = ρ
�

wi, β̂
�

andρi = ρ (wi,β0). For bi = supβ∈B ∥ρ (wi,β)∥we have Ω̂⩽
∑n

i=1 b2
i qiq

′
i/n

de f
= Ω̇. Also, by Assumptions 1(a) and 2(d),

E
�


Ω̇− E
�

Ω̇
�



2�

= E















n
∑

i=1

b2
i qiq

′
i

�

n− E
�

b2
i qiq

′
i

�











2




= tr E
�

�

b2
i qiq

′
i − E

�

b2
i qiq

′
i

��2��
n

≤ tr E
�

b4
i

�

qiq
′
i

	2��
n

⩽ tr E
�

E
�

b4
i |zi

��

qiq
′
i

	2��
n

⩽ tr E
�

∥qi∥
4
� �

n⩽ C/n.

It follows by M that


Ω̇− E
�

Ω̇
�

= Op(n−1/2). Also, by Assumptions 1(a) and 2(c),

λmax

�

E
�

Ω̇
��

= λmax

�

E
�

b2
i qiq

′
i

��

= λmax

�

E
�

E
�

b2
i |zi

�

qiq
′
i

��

⩽ C tr E
�

qiq
′
i

�

≤ C E
�

∥qi∥
2
�

≤ C .

It follows that


λmax

�

Ω̇
�

−λmax

�

E
�

Ω̇
��

⩽


Ω̇− E
�

Ω̇
�



p
→ 0 and therefore λmax

�

Ω̇
�

≤ C w.p.a.1.

Moreover α→ 0 as n→∞, then α⩽ C for n large enough; giving the result (i) by Ω̂≤ Ω̇.
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Also, by β̂
p
→ β0, β̂ ∈ N w.p.a.1 so that by Assumption 2(d) |ρ̂i −ρi| ≤ δi



β̂ − β0



 for all

i = 1, . . . , n w.p.a.1, where δi = δ2 (wi) . Mi = δ2
i + 2δi∥ρi∥ has E[Mi|zi] bounded by CS and

Assumption 2(d) so that E
�

Mi ∥qi∥
2
�

= E
�

E [Mi|zi]∥qi∥
2
�

≤ C . It follows by Assumption 2(b),

CS and M that


Ω̂− Ω̃


=











n−1
n
∑

i=1

�

ρ̂2
i −ρ

2
i

�

qiq
′
i











⩽ n−1
n
∑

i=1

�

�ρ̂2
i −ρ

2
i

�

�∥qi∥
2

⩽ n−1
n
∑

i=1

�

(ρ̂i −ρi)
2 + 2|ρ̂i −ρi||ρi|

�

∥qi∥
2

⩽ n−1
n
∑

i=1

�

δ2
i ∥β̂ − β∥

2 + 2δi |ρi|


β̂ − β0





�

∥qi∥
2

⩽


β̂ − β0





n
∑

i=1

Mi ∥qi∥
2 /n

≤ Op (τn)Op

�

E
�

Mi ∥qi∥
2
��

= Op (τn) ,

giving the first result in (ii).

Note that by Assumptions 1(a) and 2(d),

E
�


Ω̃− Ω̄




2
�

= E















n
∑

i=1

�

ρ2
i −σ

2
i

�

qiq
′
i

�

n











2




= tr E
�

�

ρ2
i −σ

2
i

�2 �
qiq
′
i

	2��
n

≤ tr E
�

ρ4
i

�

qiq
′
i

	2��
n

⩽ tr E
�

E
�

ρ4
i |zi

�

{qiq
′
i}

2
� �

n

≤ C E
�

∥qi∥
4
� �

n≤ C/n,

so that the second result in (ii) follows by M.

The third result follows by M and

E
�


Ω̄−Ω




2
�

= E















n
∑

i=1

σ2
i qiq

′
i/n− E

�

ρ2
i qiq

′
i

�











2




= tr E
�

�

σ2
i qiq

′
i − E

�

ρ2
i qiq

′
i

��2��
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As in the proof of (i), λmax(Ω)≤ C by Assumptions 1(a) and 2(c). Similarly to the proof of (i), it

follows by |λmax(A)−λmax(B)| ≤ ∥A− B∥ that w.p.a.1 λmax

�

Ω̄
�

≤ C and λmax

�

Ω̂
�

≤ C .

It remains to show that


Ω̌− Ω̄


 = Op

�

κn +τn + n−1/2
�

. Given previous results, it will be
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sufficient to show that


Ω̌− Ω̂


= Op (κn) . Note that s1(v) = −(1+ v) so that by Assumptions 1(a)

and 2(d), and CS,
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Lemma 10. If Assumptions 1 and 2 are satisfied, αn1/2−1/γ−ϵ→∞ as n→∞, where ϵ > 0 is such
that 1/2− 1/γ− ϵ > 0, then



 ĝ
�

β̂
�

= Op

�

(nα)−1/2
�

.

Proof. Let Ω̂ = Ω̂(β̂), ĝ = ĝ(β̂), and Λn be as defined in Lemma 6. Also, let δn = n−1/γ−ϵ and

λ̄= −δn ĝ/∥ ĝ∥ so that λ̄′ ĝ = −δn ∥ ĝ∥ and ∥λ̄∥= δn. Then λ̄ ∈ Λn and by Lemma 6 λ̄ ∈ Λn ⊆ Λ̂(bβ)
w.p.a.1. Also, by Lemma 9(i), λmax

�

Ω̂+αI
�

≤ C so that Lemma 8 applied to λ̄ gives

Op(1/(αn)) = P̂(β̂ , λ̄) = −λ̄′ ĝ −
1
2
λ̄′
�

Ω̂+αI
�

λ̄⩾ δn ∥ ĝ∥ − Cδ2
n,

or equivalently δn ∥ ĝ∥−Cδ2
n ≤ Op(1/(nα)). Adding Cδ2

n from both sides and dividing by δn gives

∥ ĝ∥ ≤ Op (1/ (nαδn)) + Cδn =
1

αn
1
2−

1
γ−ϵn

1
2

Op(1) + Cδn = o(1)Op(1) + Cδn = Op (δn) .

Now consider any ϵn → 0. Let λ̃ = −ϵn ĝ. Then ∥λ̃∥ = |ϵn| ∥ ĝ∥ = o(1)Op (δn) so that w.p.a.1.

λ̃ ∈ Λn ⊆ Λ̂(β̂) by Lemma 6. For n large enough,

P̂(β̂ , λ̃)⩾ −λ̃′ ĝ − C∥λ̃∥2 =
�

ϵn − Cϵ2
n

�

∥ ĝ∥2 ⩾ ∥ ĝ∥2 ϵn/2.

It then follows by Lemma 8 ∥ ĝ∥2 ϵn = Op(1/(nα)). Since ϵn is any sequence converging to zero, it

follows that ∥ ĝ∥2 = Op(1/(nα)) giving the result.

Proof of Theorem 4.1. By Â
de f
= n−1

∑n
i=1 qiq

′
i being positive semidefinite, Â+ αI ⩾ αI so that

λmin(Â+ αI) ⩾ α and therefore λmax

�

W̃
�

⩽ 1/α for W̃ = (Â+ αI)−1. By CS and Lemma 10,

R̂(β̂) = ĝW̃ ĝ ⩽ α−1 ∥ ĝ∥2 = Op

�

α−2n−1
� p
→ 0 since α2n =

�

αn
1
2−

1
γ−ϵ
�2

n
2
γ+2ϵ →∞ as n →∞.

It follows that R̂(β̂)
p
→ 0 = R (β0). By Lemma 5, hypotheses in the statement of Lemma 1 are

satisfied. The conclusion then follows from Lemma 1.

Lemma 11. If Assumptions 1, 2, and 3 are satisfied, αn1/2−1/γ−ϵ →∞ as n→∞, where ϵ > 0 is
such that 1/2− 1/γ− ϵ > 0, then β̂ = β0 +Op

�

(α
p

n)−1
�

.
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Proof. For notational convenience, let β̂ = β̂ . By an expansion ĝ = ḡ + Ġ
�

β̂ − β0

�

for

Ġ = n−1
∑n

i=1 qiρβ
�

wi, β̄
�

, where β̄ is on the line joining β̂ and β0. Therefore,

R̂(β̂)
de f
= ĝ ′W̃ ĝ =

�

ḡ + Ġ
�
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��′
W̃
�

ḡ + Ġ
�
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��

= R̂ (β0) + 2 ḡ ′W̃ Ġ
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+ D̂2

where D̂ =
��
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�

Ġ′W̃ Ġ
�

β̂ − β0

��1/2
. Then for F̂ =

�

R̂(β̂) + R̂ (β0)
�1/2

, it follows by T, CS and

R̂ (β0)
1/2 ≤ F̂ , D̂ ⩾ 0 that

D̂2 = R̂(β̂)− R̂ (β0)− 2 ḡ ′W̃ Ġ
�

β̂ − β0

�

=
�

�R̂(β̂)− R̂ (β0)− 2 ḡ ′W̃ Ġ
�
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��

�

≤ R̂(β̂) + R̂ (β0) + 2
�

�g ′W̃ Ġ
�

β̂ − β0

��

�≤ R̂(β̂) + R̂ (β0) + 2R̂ (β0)
1/2 D̂ ≤ F̂2 + 2F̂ D̂.

Subtracting 2F̂ D̂, adding F̂2 from both sides and the taking square roots gives |D̂ − F̂ | ≤
p

2F̂ .

Also, by T, |D̂ − F̂ | ⩾ D̂ − F̂ , so that D̂ ≤ (
p

2+ 1)F̂ = C F̂ . By Lemma 2, ∥ ḡ∥ = Op

�

n−1/2
�

and by

Lemma 10 ∥ ĝ∥ = Op

�

(nα)−1/2
�

. Also, as in the proof of Theorem 4.1 λmax

�

W̃
�

≤ 1/α w.p.a.1 so

that by T

F̂2 ≤ R̂(β̂) + R̂ (β0)≤
1
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�
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�

1/α2n
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.

Also, Lemma 4 applied to β̂ = β̄ , β̄ = β0, U(z) = 1, a(w,β) = ∂ ρ(w,β)/∂ β , and b(w,β) =
∂ ρ(w,β)/∂ βl for k, l = 1, . . . , p gives

�

Ġ′W̃ Ġ
�

kl

p
→ E [(D(z)′D(z))kl] for all k, l so that Ġ′W̃ Ġ

p
−→

E [D(z)′D(z)] which is non singular by Assumption 3(d). It then follows that λmin

�

Ġ′W̃ Ġ
�

⩾ C

w.p.a.1 and then D̂2 =
�

β̂ − β0

�
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 . Therefore, C
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2
≤ D̂2 ≤

C F̂2 = Op

�

1/(nα2)
�

, giving the result.

Some useful notations are needed for the next result. Let Di = D (zi), Ĝ = n−1
∑n

i=1 qiρβ
�

wi, β̂
�

,

Ḡ = n−1
∑n

i=1 qi Di, G = E [qi Di] , and G̃ = n−1
∑n

i=1 qiρβ (ωi,β0) .

Lemma 12. If Assumptions 1, 2(b)-(e), and 3(b)-(c) are satisfied and β̂ = β0+Op (τn) with τn→ 0,

then

(i)


Ĝ − Ḡ


= Op

�

τn + n−1/2
�

and


Ḡ − G
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�

n−1/2
�

;

(ii) If in additionα→ 0 andαn→∞ as n→∞, then




Ḡ′
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Ω̄+αI
�−1 �

bΩ− Ω̄
�





= Op

�

τn + n−1/2
�

;

(iii) For ∥λ̃∥ = Op (κn) and Ǧ = −n−1
∑n

i=1 s1

�

λ̃′ ĝi

�

∂ gi(β̂)/∂ β ′ then


Ǧ − Ĝ


 = Op (κn) and


Ǧ − Ḡ


= Op

�

κn +τn + n−1/2
�

.

Proof. Let ρβ i = ρβ (wi,β0), then E
�

ρβ i

�

= E[Di] by iterated expectation. Also, by Assumption

31



3(c)
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It follows by M that


G̃ − Ḡ


= Op

�

n−1/2
�

.

Also, by the mean value theorem for vector-valued functions,


ρβ(w,β)−ρβ (w,β0)


≤
δ3 (w)∥β − β0∥, for all β ∈ N , where δ3(w) = supβ∈N



ρββ(w,β)


 with E [δ3(w)] bounded by

Assumption 3(c). For ρ̂β i = ρβ
�

wi, β̂
�

, it follows by T, CS, and M that
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It then follows by T that


Ĝ − Ḡ
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Ĝ − G̃


+


G̃ − Ḡ


 = Op

�
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, giving the first result

in (i).

Also, by the Jensen’s Inequality and Assumption 3(c), ∥Di∥
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The second conclusion in (i), then follows by M and
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For the proof of (ii) let D(z) =
�

D1(z), · · · , Dp(z)
�

where Dk(z) = E [∂ ρ (w,β0)/∂ β |z]. Then

by Assumptions 2(e) and 3(c), the hypothesis in the statement of Lemma 4 are satisfied for

a(w,β) = Dk(z), b(w,β) = Dl(z) and U(z) = σ(z)2, for k, l = 1, · · · , p. It follows by the con-

clusion of Lemma 4 that
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and hence Ḡ′
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Next, let Mi = δ2
i +2δi |ρi|, where δi = δ2 (wi) and ρi = ρ (wi,β0). Also, let Z = (z1, · · · , zn). It is

well known that if E
�

R̂n|Z
�

= Op (νn) for some νn then R̂n = Op (νn). For R̂n =
∑n

i=1 Mi∥Hi∥∥qi∥/n,

it follows by CS and M that

E
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so that R̂n = Op (1). Therefore by Assumption 2(d), CS and T
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Also by Assumptions 1(a) and 2(d)
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so that
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. The conclusion in (ii) follows by T, that is,
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To prove (iii), note that s1(v) = −(1 + v) so that Ǧ =
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qiρ̂β i/n, where ρ̂β i =
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ρβ
�

wi, β̂
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. Let bi = supβ∈N


ρβ (wi,β)


, then by 3(c), T, CS, and M
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giving the first result in (iii). The second result in (iii) follows by T.

Lemma 13. If Assumption 1 is satisfied, ϵi, Yi are random variables with E [ϵi|zi] = 0, E
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2 |zi
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≤
C, E

�

∥Yi∥
2 |zi

�

≤ C, Ui = U(zi) is a nonnegative scalar function that is bounded away from zero,
K →∞,α→ 0,α

p
n→∞ then,

�

1
n

n
∑

i=1

qiYi

�′�
1
n

n
∑

i=1

Uiqiq
′
i +αI

�−1�

1
p

n

n
∑

i=1

qiϵi

�

−
1
p

n

n
∑

i=1

E [Yi|zi]
′ U−1

i ϵi
p
→ 0.

Proof. Let P and Qα be as defined in the proof of Lemma 4, Ai = U−1/2
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similarly to the proof of Lemma 4
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(A− Ā)′Qα(A− Ā)
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The conclusion follows by M and T.

Proof of Theorem 4.2. Let an = (nα)1/2, then ∥g(β̂)∥= Op(a−1
n ) by Lemma 10. For δn = n−1/γ−ϵ,

δnn1/γ→ 0 and αδnan = α3/2n1/2−1/γ−ϵ →∞ as n→∞. It follows that hypotheses of Lemma 7

are satisfied with β̃ = β̂ so that λ̂= argmaxλ∈Λ̂(β̂) P̂(β̂ ,λ) exists w.p.a.1, and ∥λ̂∥= Op

�
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.
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p
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Expanding ĝ around β0 gives, for a mean value β̇ , Ġ = n−1
∑n

i=1 qiρβ
�

wi, β̇
�

, and ḡ = ĝ (β0)

Ǧ′
�

Ω̂+αI
�−1

Ġ
�

β̂ − β0

�

+ Ġ′
�

Ω̂+αI
�−1

ḡ = 0. (A.18)

Note by Assumptions 2(e) and 3(d) that E
�

D(z)′σ(z)−2D(z)
�

⩾ C E [D(z)′D(z)] so that

V =
�

E
�

D(z)′σ(z)−2D(z)
�	−1

exists. Now successively apply Lemma 4 with θ = (β ′,λ′)′ , θ̃ =
�

β ′0, 0′
�′

, θ̂ =
�

β̂ ′, λ̂′
�′

, a (wi,θ ) = s1 (λ′gi(β))∂ ρ (w,β)/∂ βr , b (wi,θ ) = ∂ ρ (wi,β)/∂ βs, and

U(z) = σ(z)2 = E
�

ρ (w,β0)
2 |z
�

for r, s = 1, . . . , p, we obtain Ǧ′
�

Ω̄+αI
�−1

Ġ
p
→ V−1. Also, by

Lemma 11 β̂ = β0 + Op (τn) with τn = α−1n−1/2 so that the conclusion of Lemma 9(ii) gives


Ω̂− Ω̄


= Op

�

τn + n−1/2
�

= Op

�

α−1n−1/2
�

= op(1) by αn1/2→∞. It follows that

Ǧ′
�

Ω̂+αI
�−1

Ġ = Ǧ′
�

Ω̄+αI
�−1

Ġ + op(1)
p
→ V−1. (A.19)

Also as previously justified, ∥λ̂∥ = Op (κn), where κn = α−3/2n−1/2. By Lemma 12(ii)&(iii) ap-

plied to λ̃= λ̂, we have




Ḡ′
�

Ω̄+αI
�−1 �

Ω̂− Ω̄
�





= Op

�

τn + n−1/2
�

= Op

�

α−1n−1/2
�

and


Ǧ − Ḡ


=

Op

�

κn +τn + n−1/2
�

= Op

�

α−3/2n−1/2
�

so that Â
de f
=


Ǧ − Ḡ


+




Ḡ′
�

Ω̄+αI
�−1 �

Ω̂− Ω̄
�





= Op

�

α−3/2n−1/2
�

.

By Ω̂ p.s.d. λmin

�

Ω̂+αI
�

≥ α and therefore λmax

¦

�

Ω̂+αI
�−1©

≤ 1/α. By Lemma 2 ∥ ḡ∥ =
Op

�

n−1/2
�

so that by CS







�

Ω̂+αI
�−1

ḡ




=
¦

ḡ ′
�

Ω̂+αI
�−1 �

Ω̂+αI
�−1

ḡ
©1/2

≤
1
α

�

ḡ ′ ḡ
	1/2
=

1
α
∥ ḡ∥= Op

�

α−1n−1/2
�

.

It follows that Â






�

Ω̂+αI
�−1

ḡ




 = bnOp

�

n−1/2
�

with bn = α−5/2n−1/2 = o(1) by the hypothesis in
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Theorem 4.2, so that Â






�

Ω̂+αI
�−1

ḡ




= op(n−1/2). Then by T and CS





Ǧ′
�

Ω̂+αI
�−1

ḡ − Ḡ′
�

Ω̄+αI
�−1

ḡ






=






�

Ǧ − Ḡ + Ḡ
�′ �
Ω̂+αI

�−1
ḡ − Ḡ′

�

Ω̄+αI
�−1

ḡ






≤






�

Ǧ − Ḡ
� �

Ω̂+αI
�−1

ḡ




+




Ḡ′
�

Ω̄+αI
�−1 �

Ω̄− Ω̂
� �

Ω̂+αI
�−1

ḡ






⩽ Â






�

Ω̂+αI
�−1

ḡ




= op(1/
p

n).

It follows that Ḡ′
�

Ω̂+αI
�−1

ḡ = Ḡ′
�

Ω̄+αI
�−1

ḡ +op(1/
p

n).

Furthermore, Lemma 13 applied to Y ′i = D (zi)
de f
= Di, ϵi = ρ (wi,β0)

de f
= ρi, and Ui =

σ2
i

de f
= σ(zi)2, leads to Ḡ′

�

Ω̄+αI
�−1

ḡ − n−1
∑n

i=1 D′iσ
2
i ρi = op(1/

p
n). Also, by the Lindbergh-

Levy central limit theorem
∑n

i=1 D′iσ
−2
i ρi/
p

n→
d
→ N(0,Λ), where, by iterated expectation, Λ

de f
=

E
�

D′iσ
−2
i ρ

2
i σ
−2
i Di

�

= E
�

D′iσ
−2
i Di

�

= V−1. Therefore,

p
nḠ′(Ω̄+αI)−1 ḡ =

p
n

�

Ḡ′
�

Ω̄+αI
�−1

ḡ −
n
∑

i=1

D′iσ
−2
i ρi

�

n

�

+
n
∑

i=1

D′iσ
−2
i ρi

�p
n

= op(1) +
n
∑

i=1

D′iσ
−2
i ρi/
p

n
d
→N

�

0, V−1
�

,

and thus
p

nǦ′
�

Ω̂+αI
�−1

ḡ =
p

nḠ′
�

Ω̄+αI
�−1

ḡ + op(1)
d
→N

�

0, V−1
�

(A.20)

By Eq. (A.18)
p

n(β̂ − β0) = −
�

Ǧ′
�

Ω̂+αI
�−1

Ġ
�−1p

nǦ′
�

Ω̂+αI
�−1

ḡ,

so that by Eq. (A.19), Eq. (A.20), the Slutzky’s theorem, and the continuous mapping theorem,
p

n(β̂ − β0)
d
→N (0, V ), giving the first result.

We now establish the consistency of the variance estimator. First, applying Lemma 4 gives

Ǧ′
�

Ω̄+αI
�−1

Ǧ
p
→ V−1. Also, by Ω̄ p.s.d. λmax

�

�

Ω̄+αI
�−1�

⩽ 1/α so that for B̂ =
�

Ω̄+αI
�−1

Ǧ, it follows by CS

that
∥B̂∥2 = tr

�

B̂′B̂
�

= tr
�

Ǧ′
�

Ω̄+αI
�−1 �

Ω̄+αI
�−1

Ǧ
�

≤
1
α

tr
�

Ǧ′
�

Ω̄+αI
�−1

Ǧ
�

≤ Op(1/α).

Also by Lemma 9 applied to κn = α−3/2n−1/2 andτn = α−1n−1/2 we have


Ω̌− Ω̄


= Op

�

κn +τn + n−1/2
�

=
Op

�

α−3/2n−1/2
�

for Ω̌= −
∑n

i=1 s1

�

λ̂′ ĝi

�

ĝi ĝ
′
i

�

n. By T, CS,
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λmax

�

(Ω̌+αI)−1
	

≤ 1/α, and A−1 − B−1 = B−1
�

(B − A) + (B − A)A−1(B − A)
�

B−1,





Ǧ′
�

Ω̌+αI
�−1

Ǧ − Ǧ′
�

Ω̄+αI
�−1

Ǧ




=




Ǧ′
�

�

Ω̌+αI
�−1
−
�

Ω̄+αI
�−1�

Ǧ






=




B̂′
¦

Ω̄− Ω̌+
�

Ω̄− Ω̌
� �

Ω̌+αI
�−1 �

Ω̄− Ω̌
�

©

B̂






≤∥B̂∥2
�


Ω̄− Ω̌


+α−1


Ω̄− Ω̌




2
�

≤Cα−1
�

Op

�

α−3/2n−1/2
�

+α−1Op

�

α−3n−1
��

≤Op

�

α−5/2n−1/2
�

+Op

�

�

α−5/2n−1/2
�2� p
→ 0.

It follows that Ǧ′(Ω̌ + αI)−1Ǧ = Ǧ′
�

Ω̄+αI
�−1

Ǧ + op(1)
p
→ V−1. Also, by s1(v) = −(1 + v),

we have
�

�1+
∑n

i=1 s1 (v̂i)/n
�

� =
�

�

∑n
i=1 v̂i/n

�

� ≤ max1≤i≤n

�

�λ̂′ ĝi

�

�

p
→ 0 so that

∑n
i=1 s1 (v̂i)/n

p
−→

−1. Note that Ω̌ = −n−1
∑n

i=1 s1 (v̂i) Ω̂ and Ǧ = −n−1
∑n

i=1 s1 (v̂i) Ĝ so that Ĝ′
�

Ω̂+αI
�−1

Ĝ =

−
�

n
�∑n

i=1 s1 (v̂i)
�

Ǧ′
�

Ω̌+αI
�−1

Ǧ. It follows by continuous mapping that,

V̂−1 de f
= Ĝ′

�

Ω̂+αI
�−1

Ĝ

= −Ǧ′
�

Ω̌+αI
�−1

Ǧ

�

1+ n−1
∑n

i=1 s1 (v̂i)

n−1
∑n

i=1 s1 (v̂i)

�

+ Ǧ′
�

Ω̌+αI
�−1

Ǧ
p
−→ V−1,

giving the consistency result for the variance estimator.
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