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Abstract

This paper presents a Wald test for multi-horizon Granger causality within a high di-
mensional sparse Vector Autoregression (VAR) framework. The null hypothesis focuses
on the causal coefficients of interest in a local projection (LP) at a given horizon. Never-
theless, the post-double-selection method on LP may not be applicable in this context,
as a sparse VAR model does not necessarily imply a sparse LP for horizon h > 1. To
validate the proposed test, we develop two types of de-biased estimators for the causal
coefficients of interest, both relying on first-step machine learning estimators of the VAR
slope parameters. The first estimator is derived from the Least Squares method, while
the second is obtained through a two-stage approach that offers potential efficiency
gains. We further derive heteroskedasticity- and autocorrelation-consistent (HAC) in-
ference for each estimator. Additionally, we propose a robust inference method for
the two-stage estimator, eliminating the need to correct for serial correlation in the
projection residuals. Monte Carlo simulations show that the two-stage estimator with
robust inference outperforms the Least Squares method in terms of the Wald test size,
particularly for longer projection horizons. We apply our methodology to analyze the
interconnectedness of policy-related economic uncertainty among a large set of coun-
tries in both the short and long run. Specifically, we construct a causal network to
visualize how economic uncertainty spreads across countries over time. Our empirical
findings reveal, among other insights, that in the short run (1 and 3 months), the U.S.
influences China, while in the long run (9 and 12 months), China influences the U.S.
Identifying these connections can help anticipate a country’s potential vulnerabilities
and propose proactive solutions to mitigate the transmission of economic uncertainty.
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1. Introduction

Granger causality test is widely used in economics and finance to analyze the interconnect-
edness between time series in a multivariate system. The concept of Granger causality at
a single horizon was initially introduced by Granger (1969) and later extended by Dufour
and Renault (1998) to multiple horizons, enabling the exploration of interconnectedness
between variables over extended time periods.1 This paper develops a simple and user-
friendly method for testing multi-horizon Granger causality in a high-dimensional (HD)
system, where the number of time series is relatively large compared to the time series
length. Several applications involving high-dimensionality are relevant in economics and
finance. These include: (i) exploring spillovers and contagion among policy-related Eco-
nomic Uncertainty Indices (see Baker et al., 2016) at the country level, (ii) evaluating the
spillover effects of U.S. monetary policy on developing countries, and (iii) investigating
volatility transmission in stock return prices.

Multi-horizon Granger causality test is typically conducted under the assumption that
the underlying process follows a Vector Autoregressive (VAR) model. The null hypothesis
of the test includes the parameters in a multi-horizon linear projection (LP) model, which
projects future outcomes (up to a specified horizon) on current information (see Dufour
et al., 2006 and Dufour and Wang, 2024). In macroeconomics, the linear projection is
commonly referred to as Local Projection (Jordà, 2005), particularly when estimating im-
pulse responses. However, high dimensionality render the standard Least Squares approach
inappropriate since the covariance matrix of the explanatory variables could be singular. A
widely used solution is the post-double-selection LASSO (pds-LASSO) method, which op-
erates under the assumption of sparsity.2 For instance, Hecq, Margaritella, and Smeekes
(2023) apply pds-LASSO in the spirit of Belloni et al. (2014b), assuming sparsity in the
underlying VAR process, to test (horizon one) Granger causality. However, extending this
method to test multi-horizon Granger causality might not be feasible. Indeed, the LP is a
nonlinear transformation of the underlying VAR process and it implies that a sparse VAR
does not necessarily lead to a sparse LP for horizons h > 1. Directly imposing the assump-
tion of sparsity on LP for all horizons h > 1 can be overly restrictive. Therefore, assuming
sparsity only in the underlying VAR model is essential for testing multi-horizon Granger
causality.

In this paper, we contribute to the literature by introducing two de-biased estimation
methods with statistical inference for multi-horizon Granger-causal coefficients within a
sparse high-dimensional VAR framework. Our approach enhances the application of multi-
horizon Granger causality tests in high-dimensional datasets. Specifically, our contribution
is fourfold.

First, we propose de-biased Least Squares (LS) estimators for multi-horizon Granger-
causal coefficients, which are a finite subset of parameters in the Local Projection (LP)

1For instance, see Lütkepohl (1993), Dufour and Renault (1998), Dufour and Taamouti (2010), Diebold
and Yılmaz (2014), Salamaliki and Venetis (2019), among others.

2Another approach to handle high dimensionality is principal component analysis (PCA), which assumes
that only a few common factors drive the high-dimensional controls. Examples include factor VAR models,
as discussed in Bernanke et al. (2005) and Stock and Watson (2016). In this paper, we focus on a sparse
high-dimensional model without the common factor assumption.
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equation. These estimators assume sparsity only in the underlying data-generating process
(VAR model), rather than in the LP model itself. Our research highlights a crucial yet often
overlooked fact: within a sparse VAR framework, when the projection horizon exceeds one,
the LP equation may not exhibit sparsity, as LP coefficients are highly nonlinear transfor-
mations of the VAR matrix coefficients. We derive the asymptotic Gaussian distribution for
the de-biased LS estimates and provide Heteroskedasticity- and Autocorrelation-Consistent
(HAC) standard errors to account for serial correlation in the projection residuals.

Second, we extend the two-stage estimator for multi-horizon Granger-causal coeffi-
cients, originally proposed in Dufour and Wang (2024) for low-dimensional frameworks,
to the high-dimensional VAR context. The two-stage estimators offer two primary advan-
tages over the LS estimators: (1) they are generally more efficient when the horizon ex-
ceeds one, and (2) they could provide robust inference, eliminating the need to correct for
serial correlation in the projection residuals (see Montiel Olea and Plagborg-Møller, 2021
and Dufour and Wang, 2024). We derive an asymptotic Gaussian distribution for these
estimators with HAC standard error estimators under weak regularity conditions. More-
over, under additional conditions on the VAR disturbances, we propose Heteroskedasticity-
Consistent (HC) standard errors. These HC standard errors eliminate the reliance on HAC
estimators, addressing issues such as over-rejection of confidence intervals in small sam-
ples and challenges with bandwidth and kernel function selection (see Lazarus et al., 2018
and Lazarus et al., 2021), as well as the computational inefficiency of bootstrap methods
in high-dimensional settings.

Third, we derive de-biased multi-horizon Granger-causal coefficient estimators using
the de-sparsification technique proposed by van de Geer et al. (2014), as applied to struc-
tural impulse response estimates in Adamek et al. (2023). Instead of directly applying
LASSO or post-double-selection LASSO to the LP, we first estimate the regularized VAR
slope coefficients using methods such as LASSO and its variants (e.g., adaptive LASSO,
elastic net). We then compute the multi-horizon Granger-causal coefficients using explicit
formulas from two distinct estimation methods. To address the bias introduced by high-
dimensional control variables, we de-bias these estimates, ensuring valid Gaussian infer-
ence in high-dimensional settings. Our de-biasing procedures can be interpreted in terms
of Neyman orthogonalization (see, e.g., Chernozhukov et al., 2018), allowing to mitigate
the impact of a potential regularization bias in the first-step estimation of VAR coefficients
on the second-step estimators of the causal coefficients of interest.

We assess the performance of the Wald test based on both de-biased estimators and var-
ious variance estimators. We use the size of the Wald test as a measure of performance. Our
results reveal that the two-stage approach with heteroskedastic-consistent (HC) standard
errors outperforms the two-stage or least-squares approaches with HAC-type standard er-
rors, particularly for large projection horizons. Indeed, as the projection horizon increases,
while HC robust inference provides good size, sizes for HAC-type inference worsen. This
size distortion arises because HAC-type variance estimators tend to become imprecise as the
projection horizon increases due to high dimensionality. Moreover, our procedures outper-
form the post-double-selection procedure with HAC inference for all horizons. Additionally,
we show in simulations that the size of the test converges to the nominal level for all infer-
ence procedures.

Finally, we apply the multi-horizon Granger causality test to study economic uncer-
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tainty interconnectedness among a large set of countries and construct a causal network
to observe how uncertainty spreads across these countries. Our sample consists of 20 se-
ries of country-level monthly economic uncertainty indices collected from January 2003 to
February 2024 (see Baker et al., 2016 for the construction of this index). Our objective is to
visualize the strength of connectedness through Granger causality across multiple horizons.
We implement pair-wise Granger causality tests at different horizons while controlling each
time for the remaining countries in the sample. We then construct a heatmap, based on the
significance levels of the test statistics, to illustrate interconnectedness in country-level eco-
nomic uncertainty indices. Our empirical results show, among other insights, that in terms
of economic uncertainties, the U.S. Granger-causes China in the short run (1 and 3 months),
while China exerts influence over the U.S. in the long run (9 and 12 months). Our intuition
for this result is that: (i) the U.S. has a dominant role in global economic policy, causing
immediate spillovers to China, and trade dependency may amplify short-run transmission
from the U.S. to China; (ii) China’s growing influence on the global market, including raw
materials and manufacturing, increasingly affects U.S. economic conditions over time, and
potential long-term adjustments in trade and strategic U.S. sectors shift uncertainty from
China to the U.S. in the long run. However, gaining more insights into the channels behind
the interconnections we have identified requires deeper analysis of the types of transactions
between countries in our sample.

Relevant Literature: Our study is related to the literature on regularized estimation in
high-dimensional time series, drawing on work by Basu and Michailidis (2015), Medeiros
and Mendes (2016), Wong et al. (2020), Masini et al. (2022), and Adamek et al. (2023).
While these papers primarily focus on regularized estimation techniques, our research shifts
the emphasis to de-biased estimation and inference for parameters in local projection (LP)
equations, which are built upon these regularized estimates of VAR slope coefficients. The
de-biasing technique we adopt is closely related to the debiased/desparsified methods in the
literature, see Belloni et al. (2012), van de Geer et al. (2014), Chernozhukov et al. (2018),
and Krampe et al. (2023), among others. To the best of our knowledge, however, we are
the first to investigate multi-horizon Granger-causal coefficients within a high-dimensional
VAR framework.

Our investigation into multi-horizon Granger causality in high-dimensional settings
complements the growing literature on Granger causality at a single horizon in large datasets,
such as the studies by Hecq et al. (2023) and Babii et al. (2024). While Adamek et al. (2024)
examine debiased estimates for impulse responses in high-dimensional LP models, their fo-
cus remains on impulse responses, whereas our study specifically addresses multi-horizon
Granger-causal coefficients. The distinction between Granger causality at a single hori-
zon and at multiple horizons is conceptually grounded in the work of Dufour and Renault
(1998).

Our debiased least squares (LS) estimators with HAC inference in high-dimensional
LP models extend the low-dimensional estimation methods discussed by Jordà (2005) and
Dufour et al. (2006). Additionally, our heteroskedasticity-robust inference for two-stage
debiased estimates builds upon the literature on robust inference in LP models, including
Montiel Olea and Plagborg-Møller (2021), Breitung and Brüggemann (2023), Xu and Guo
(2024), and Dufour and Wang (2024). However, these studies focus exclusively on low-
dimensional frameworks. To our knowledge, we are the first to propose heteroskedasticity-
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robust inference in a high-dimensional LP model.
This paper tackles high-dimensionality by employing the sparsity assumption and reg-

ularized estimation. An alternative common approach involves assuming common factors
and applying principal component analysis (PCA), as in the classical Factor VAR (FAVAR)
framework developed by Bernanke et al. (2005) and Stock and Watson (2016). Recently,
Miao, Phillips, and Su (2023) incorporated latent factors into a sparse high-dimensional
VAR model, though their algorithm is notably complex due to the simultaneous estimation
of high-dimensional coefficient matrices and the common component matrix.

Our research on causal connectedness visualizes the significance levels of Wald test
statistics for multi-horizon Granger causality. This approach relates to the work on net-
work connectedness by Diebold and Yılmaz (2014), which accounts for connectedness us-
ing generalized variance decompositions by Koop, Pesaran, and Potter (1996) and Pesaran
and Shin (1998). Multi-horizon Granger causality reveals the specific information that a
given variable contributes to the forecast of a target outcome at various horizons.

Outlines: This paper is structured as follows. Section 2 outlines the econometric frame-
work. In Section 3, we review a range of regularized estimators in high-dimensional mod-
els. Section 4 introduces a de-biased Least Squares estimation method. Section 5 presents a
de-biased two-stage estimation method. We derive asymptotic Gaussian inference for both
estimators, as well as robust inference for the de-biased two-stage estimators, in Section
6. The results of Monte Carlo simulations are presented in Section 7. Section 8 provides
an empirical application of our methods and visualizes the connectedness of country-level
economic uncertainties. Finally, Section 9 concludes the paper. Proofs of the results are
collected in the Appendix.

Notations: The following notations are used throughout the paper. C > 1 will de-
note a generic constant of n that may be different in different uses. Let r, s ∈ N. ẽr j, j =
1, . . . , r denote the r-dimensional unit vectors, where ẽr j contains 1 at the jth position and
0 elsewhere. For any vector x ∈ Rr , ∥x∥1 :=

∑r
j=1

�

�x j

�

� denotes its l1 norm, and ∥x∥22 :=
∑p

j=1

�

�x j

�

�

2
is the squared l2 norm. Furthermore, for a r × s matrix B =

�

bi, j

�

i=1,...,r, j=1,...,s
,

∥B∥1 := max1≤ j≤s

∑r
i=1

�

�bi, j

�

� = max1≤ j≤s



Bẽs j





1 is the maximum absolute column sum
norm, ∥B∥∞ :=max1≤i≤r

∑s
j=1

�

�bi, j

�

�=max1≤i≤r



ẽ′riB




1 is the maximum absolute raw sum

norm, and ∥B∥max :=max1≤i≤r,1≤ j≤s

�

�bi, j

�

� is the maximum norm. Also, denote the largest ab-
solute eigenvalue of a square matrix B by ρ(B) and let ∥B∥22 := ρ

�

BB′
�

denote the spectral
norm. The r-dimensional identity matrix is denoted by Ir and for two matrices B1 and B2,
their Kronecker product is denoted by B1⊗B2. For any symmetric and positive semi-definite
matrix B, λmin(B) and λmax(B) denote its minimum and maximum eigenvalues, respectively.

2. Framework

Consider a high-dimensional (HD) d-variate process
�

wt

	n

t=1
generated by a VAR(p) pro-

cess:

wt = A1wt−1 + A2wt−2 + · · ·+ Apwt−p + ut , (2.1)
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where ut is a serially uncorrelated random process with zero mean and non-singular co-
variance Σu, such that ut ∼ (0,Σu), λmin(Σu) > 0. The order p is assumed to be finite, and
the number of series d grows with the sample size n. To facilitate the discussion, the high-
dimensional vector wt is partitioned as wt = (yt , x t , q′t)

′, where qt is a high-dimensional
vector of control variables, and x t and yt are two scalar variables.

Following typical literature on time series (Lütkepohl (2005), Kilian and Lütkepohl
(2017)), the VAR model can be written in a compact form

wt = JAWt−1 + ut , (2.2)

where J is a d × dp selection matrix, J = [Id , 0, · · · , 0], and Wt−1 = [w′t−1, w′t−2, · · · , w′t−p]
′,

and A is the companion matrix,

A=















A1 A2 · · · Ap−1 Ap

I
I

. . .
0 I 0















. (2.3)

Granger causality is widely used in time series and economics, see Granger (1969),
Geweke (1984). Moreover, multi-horizon Granger causality is an extended definition which
has been used to better understand the dynamic causality for a multivariate system, see
Lütkepohl (1993), Dufour and Renault (1998). Without loss of generality, we will focus on
Granger causality from x t to yt over h periods. It is stated that x does not Granger-cause
y at horizon h if the following equation holds3

PL(yt+h |Wt) = PL(yt+h |W−x ,t), (2.4)

where W−x ,t denotes the vector Wt excluding (x t , x t−1, · · · , x t−p+1).
To test the above equality, we could investigate the row equation of yt in the linear

projection model,

wt+h = JAhWt + u(h)t (2.5)

where u(h)t =
∑h−1

i=0 JAiJ ′ut+h−i, and in particular JAiJ ′ is the reduced-form impulse re-
sponse; see Dufour and Renault (1998), Kilian and Lütkepohl (2017), Lusompa (2023),
among others. Note that this equation has long been used as a general forecasting model
in economics and finance. Moreover, Jordà (2005) uses it to estimate the reduced-form
impulse response and obtains the structural impulse response by post-multiplying it with
the structural matrix estimator of Θ0.

We investigate the equation of yt+h in the multivariate equation in (2.5) and write it
in a generic way,

yt+h = β
′
hWt + et,h, (2.6)

3Where PL(X |Y ) denotes the linear projection of X onto Y for given random vectors X and Y .
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where β ′h is the row line of JAh corresponding to variable yt , and et,h is the corresponding
element in u(h)t .

Without loss of generality, we partition the set of regressors as Wt = {W1,t , W2,t}, where
W1,t = R1Wt represents the low-dimensional vector of regressors of interest, and W2,t =
R2Wt represents the high-dimensional vector of control variables, containing the remaining
variables. The local projection equation (2.6) can be rewritten as

yt+h = β
′
1,hW1,t + β

′
2,hW2,t + et,h, (2.7)

where β1,h and β2,h are the corresponding coefficients for W1,t and W2,t , respectively. In
the exercise of multi-horizon Granger causality test, W1,t = (x t , x t−1, · · · , x t−p+1)′ and W2,t

contains the lagged values of y and the control variable q.4 Thus, the null hypothesis of
Granger non-causality (2.4) is stated as

H0 : β1,h = 0. (2.8)

TestingH0 involves estimating and making inferences about β1,h. Estimating β1,h is a chal-
lenging exercise because Equation (2.7) includes the high-dimensional nuisance parameter
β2,h. For example, if d = 20 and p = 4, as in our empirical application, then β1,h is a 4× 1
vector, while β2,h consists of 76 nuisance parameters, which is a large vector if the sample
size is around n = 120, as is often the case. Estimation in this high-dimensional setting
is often feasible by assuming the sparsity of the underlying VAR model given by Equation
(2.1), meaning that only a small number of coefficients in the VAR representation are non-
zero 5. Even under this assumption, the sparsity of the local projection equation (2.7) is
not always guaranteed.

Indeed, if the causality from x to y at horizon one is of interest, i.e., h = 1, the post-
double selection method could be employed to produce de-biased estimates, see Hecq et al.
(2023). This is because (2.6) is essentially a single equation in the VAR system. Therefore,
the sparsity assumption imposed on the VAR system implies that the high-dimensional co-
efficient β2,h is sparse for h = 1. However, for causality tests at horizons larger than one,
h> 1, it might not be feasible to directly apply the post-double selection method to (2.7) to
obtain de-biased estimates of β1,h. This is because the sparsity assumption on VAR matrix
slope coefficients does not necessarily imply the sparsity of the local projection coefficient
βh for all h> 1. Specifically, βh is a highly non-linear transformation of the VAR matrix co-
efficient A. We propose two approaches for estimation and inference on β1,h in the sparse
high-dimensional VAR model (2.1) under a potentially non-sparse local projection equa-
tion (2.7). Since consistent estimation of the VAR matrix coefficient is a primary step in our
procedures, we review methodologies for regularized estimation of A in the next section
before presenting our methods.

4See multi-horizon Granger causality test in low dimensional setup in Dufour et al. (2006).
5This sparsity assumption is often supported by the belief that in a high-dimensional time series system,

a given variable will be associated with only a small number of other variables in the system. In Section 6,
we will present the form of sparsity we will rely on in the theoretical derivations. The sparsity assumption
is typically incorporated into the estimation procedure via l1-penalization methods, such as lasso and its
variants (adaptive lasso, elastic net, etc.). Note that this sparsity assumption is imposed on the underlying
VAR equation and not on the local projection equations.
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3. Review of regularized estimation on high dimensional
VAR

The curse of dimensionality in high-dimensional time series frameworks is widely rec-
ognized. For instance, in a d-variate VAR(p) model, estimating pd2 parameters poses
a formidable task, particularly as the number of parameters grows significantly with d.
Even with extensive data, such as 20 years of daily observations for the S&P 100 index,
the number of parameters

�

∝ 1002
�

remains large compared to the sample size (roughly
5000 observations). To keep the model complexity tractable, a sparsity assumption is often
made (see Assumption 2(i)). Consistent estimation of the VAR matrix coefficients is then
possible via l1-type penalization. In this section, we briefly review the methodologies of
l1-regularized estimation of the VAR model under the sparsity assumption.

The Least Absolute Shrinkage and Selection Operator (LASSO), proposed by Tibshi-
rani (1996), is one of the most popular l1-regularized methods used in high-dimensional
time series. Its variant, adaptive LASSO (adaLASSO), was introduced by Zou (2006) to
overcome the limitations of LASSO. In fact, in addition to providing a sparse solution like
LASSO, adaptive LASSO enjoys the oracle property, meaning that it has the same asymptotic
distribution as OLS, conditional on knowing the regressors that should be included in the
model. The adaLASSO method involves estimating A1, . . . , Ap through row-wise regression
on d equations of the VAR model:

Â(re)
j•,1:p = argmin

1
n− p

n
∑

t=p+1









wt −
p
∑

i=1

A j•,iwt−i









2

2

+λ
p
∑

i=1

∥A j•,iΠi∥1, (3.1)

for j = 1,2, · · · , d, where A j•,1:p denotes the j-th row of slope coefficient matrices A1:p =
[A1, A2, · · · , Ap] andΠi is a diagonal matrix specifying penalty loadingsΠi = diag[πik]k=1,2,··· ,d .
If πik = 1 for all k, (3.1) reduces to a LASSO estimation equation. For instance, Belloni
et al. (2012) consider a diagonal matrix representing a data-dependent penalty loadings
for the self-normalization of the first-order conditions in the Lasso problem. Practically,
determining these data-dependent penalty loadings involves two steps. First, the ‘first step
coefficients’ are obtained by applying Lasso with a specific information criterion, such as the
Bayesian Information Criterion (BIC). Then, the data-dependent penalty loading for each
coefficient is computed using the formula |‘first step coefficients’ + (n − h)−1/2|−τ, where
τ = 1. This indicates that the data-dependent penalty loading is inversely related to the
first step Lasso coefficient. In addition, the penalty parameter λ in adaptive Lasso is also
determined through a model selection process using a specific information criterion.

Besides LASSO and adaLASSO, the elastic net (ElNet), proposed by Zou and Hastie
(2005), provides a way to combine the strengths of LASSO and ridge regression. While the
l1 part of the ElNet method performs variable selection, its l2 part stabilizes the solution.
ElNet is particularly well-suited to cases where there is a strong correlation among regres-
sors. Moreover, Hecq et al. (2023) mention the possibility of using ElNet, which allows
the penalty function to be strictly convex. As a result, ElNet can select highly correlated
variables as a group, while LASSO only selects one of these variables. Similar observations
are supported by the simulation results in the appendix of Wilms et al. (2021).
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There is a large strand of the literature on the derivation of theoretical properties of
l1-penalized least squares estimates of VAR models; see, e.g., Basu and Michailidis (2015);
Davis et al. (2016); Han and Liu (2013); Song and Bickel (2011); Wu and Wu (2014),
among others. For instance, Basu and Michailidis (2015) demonstrates the possibility of
consistent estimation under high-dimensional scaling through l1-regularization for a broad
class of stable time series processes, subject to sparsity constraints. As the aim of this paper
is not to investigate the properties of l1-penalized estimators of the VAR matrix coefficients,
we assume that we have a consistent estimator Â(re) of the matrix A (in the sense of As-
sumption 2(iii)), regardless of whether LASSO or one of its variants (adaLASSO or ElNet)
is used.

4. De-biased Least Square estimation

In this subsection, we consider the de-biased LS approach to identify and estimate the
parameter of interest, β1,h, in (2.6).

4.1. Lease Squares identification

Suppose weak exogeneity condition holds for ut and the contemporaneous covariance ma-
trix Σu is of full rank, then

βh = E[WtW
′
t ]
−1E[Wt yt+h], (4.1)

where the covariance matrix E[WtW
′
t ] can be written as a function of VAR slope coefficient

matrices and the contemporaneous covariance matrix Σu, as presented in Krampe et al.
(2023) and Lütkepohl (2005):

E[WtW
′
t ] =

∞
∑

j=0

A jJ ′ΣuJ(A′) j = vec−1
dp

�

(Id2p2 −A⊗A)−1vec(J ′ΣuJ)
�

(4.2)

As shown in Section 2.1 of Lütkepohl (2005), the stability of VAR system, that is, the largest
eigenvalue of matrix A is bounded from unit disk, ensures the invertibility of matrix (Id2p2−
A ⊗ A). Moreover, the full rankness of covariance matrix Σu ensures that the covariance
matrix E[WtW

′
t ] is positive definite. This result follows from the fact that ut (the residual

of the linear projection of wt onto the past information set) has a non-singular covariance
matrix.

By the Frisch–Waugh–Lovell theorem, the parameter of interest, β1,h, can be expressed
as

β1,h = E[W⊥1,tW
′

1,t]
−1E[W⊥1,t yt+h], (4.3)

where

W⊥1,t :=W1,t − PL(W1,t |W2,t) =W1,t −E[W1,tW
′
2,t]

�

E[W2,tW
′
2,t]
�−1

W2,t . (4.4)
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In the low-dimensional case, practitioners will take the LS projection residual as an esti-
mator of W⊥1,t in line with (4.4) and thereby conduct estimation on β1,h through sample
covariance. Precisely, an estimator of W⊥1,t is obtained in a low-dimensional setting by re-
placing population means in Equation (4.4) with their sample counterparts. However, in
the high-dimensional setup, W2,t is a high-dimensional control variable, making the stan-
dard LS projection potentially infeasible. In fact, the sample counterpart of E[W2,tW

′
2,t] can

be singular in this case. The Least Squares estimation approach we propose below still uses
the identification equation (4.3) but relies on an alternative way to estimate the rotated
regressor W⊥1,t .

4.2. De-biased Least Squares estimator

Denote ΣW := E[WtW
′
t ]. Since W1,t and W2,t are sub-vector of Wt , we rewrite them in

the form of W1,t = R1Wt and W2,t = R2Wt , where R1, R2 are selection matrices, such that
R = [R′1, R′2]

′ and RR′ = Idp. Estimation of W⊥1,t in high-dimensional setting is carried out
using the following relation obtained from Equation (4.4) through block matrix inversion,

W⊥1,t = (R1Σ
−1
W R′1)

−1R1Σ
−1
W Wt . (4.5)

Let Â(re)
1:p be the regularized estimators of (A1, · · · , Ap) as defined in Equation (3.1). Compute

the covariance matrix of ut as Σ̂u =
1

n−p

∑n
t=p+1 ût û

′
t where ût := wt −

∑p
i=1 Â(re)

i wt−i =
wt − J ÂWt−1.

Step 1: We use the explicit formula (4.2) and compute Σ̂W , the estimate of ΣW , by
using Â(re)

1:p and Σ̂u.

Step 2: Following (4.5), we estimate the regressor W⊥1,t . Instead of estimating ΣW

through sample variance, we use the estimate Σ̂W obtained from Step 1.

Ŵ⊥1,t = (R1Σ̂
−1
W R′1)

−1R1Σ̂
−1
W Wt . (4.6)

The equation can be readily checked by the block matrix inverse formula.

Step 3: Compute the LS estimate of β1,h,

β̂
(LS)
1,h =

�

∑

t

Ŵ⊥1,tW
′
1,t

�−1�
∑

t

Ŵ⊥1,t yt+h

�

. (4.7)

Step 4: Compute the de-biased LS estimate of β1,h,

β̂
(de−LS)
1,h = β̂ (LS)

1,h −
�

∑

t

Ŵ⊥1,tW
′
1,t

�−1�
∑

t

Ŵ⊥1,tW
′
2,t β̂2,h

�

(4.8)

where β̂2,h is selected from J
�

Â(re)
�h

. Eventually, we obtain the de-biased estimates
β̂
(de−LS)
1,h .
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Remark 4.1.

(i) In the low-dimensional setting, an estimator of W⊥1,t is obtained by replacing the pop-
ulation covariance and variance in Equation (4.4) with their sample counterparts.
Algebraically equivalently, this involves replacing ΣW in (4.5) with its sample coun-
terpart. However, in the high-dimensional setting, where the sample counterpart of
the high-dimensional covariance matrix ΣW is singular, Ŵ⊥1,t is obtained as in (4.6), in
which the sample covariance is estimated through the explicit formula presented in
(4.2), with A replaced with its regularized estimator.

(ii) Equation (4.6) implicitly assumes that the sample covariance of ΣW computed from
(4.2) is non-singular. Implied by (4.2), the nonsingularity of the sample covariance
matrix estimate entails that

λ′Σ̂Wλ= λ
′J ′Σ̂uJλ+

∞
∑

j=1

λ′(Â(re)) jJ ′Σ̂uJ(Â(re))
′ jλ > 0, (4.9)

for all ∥λ∥= 1,λ ∈ Rpd . It is easy to check that one sufficient condition that Σ̂W is non-
singular is the full rankness of the covariance matrix of the VAR residuals Σ̂u. Since
the sample covariance Σ̂u is computed as Σ̂u =

1
n−p

∑n
t=p+1 ût û

′
t , then one necessary

condition of the non-singularity of the sample covariance Σ̂u is the dimension of the
VAR is less than the sample size, d < n. Otherwise, Σ̂u will be singular, and this could
potentially result in the sample covariance Σ̂W being singular, though not necessarily.
This is because the full rankness of the matrix Σ̂u is not a necessary condition for
the full rankness of Σ̂W , which in turn depends on the values of the VAR companion
matrix estimates Â(re).

(iii) Notice that Step 4 is crucial to obtain de-biased estimate of β1,h. It is due to the fact
that

β̂
(LS)
1,h =

�

∑

t

Ŵ⊥1,tW
′
1,t

�−1�
∑

t

Ŵ⊥1,t yt+h

�

=
�

∑

t

Ŵ⊥1,tW
′
1,t

�−1�
∑

t

Ŵ⊥1,t

�

β ′1,hW1,t + β
′
2,hW2,t + et,h

�

�

= β1,h +
�

∑

t

Ŵ⊥1,tW
′
1,t

�−1�
∑

t

Ŵ⊥1,t et,h

�

+
�

∑

t

Ŵ⊥1,tW
′
1,t

�−1�
∑

t

Ŵ⊥1,tW
′
2,tβ2,h

�

.

The bias term emerges due to the high dimensionality. In standard time series litera-
ture, according to the Frisch-Waugh-Lovell (FWL) theorem, Ŵ⊥1,t is the residual of W1,t

after partialling out the control variable W2,t . This leads to the term
∑

t Ŵ⊥1,tW
′
2,t be-

ing equal to zero because the projection residual is orthogonal to the projection space.
However, in a high-dimensional setup, Ŵ⊥1,t is obtained through an explicit formula
rather than the projection residual. This induces the high-dimensional bias if β2,h ̸= 0.

(iv) Our de-biased estimator β̂ (de−LS)
1,h can be seen as a Neyman orthogonalized version

of β̂ (LS)
1,h (see Chernozhukov et al., 2018 for the definition of Neyman orthogonality).
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This interpretation further justifies the importance of our de-biasing procedure in mit-
igating bias in β̂ (LS)

1,h due to potential contamination by regularization bias from the
first-step machine learning estimation of the VAR matrix coefficient A.

To clarify, first note that β̂ (LS)
1,h is the solution to the sample counterpart of the moment

condition
E
�

ϕls
t

�

β1,h,η0

�

�

= 0, (4.10)

where
ϕls

t

�

β1,h,η
�

=
�

W1,t −δW2,t

�

�

yt+h −W ′1,tβ1,h

�

,

δ0 := E[W1,tW
′
2,t]

�

E[W2,tW
′
2,t]
�−1

is such that W⊥1,t =W1,t −δ0W2,t , and η0 = vec
�

δ0

�

is a high-dimensional (d − 1)p2 × 1 vector of nuisance parameters. The estimator
of δ0 is obtained by replacing population means with Ê[W1,tW

′
2,t] and Ê[W2,tW

′
2,t],

which are sub-matrices of Σ̂W . This estimator can be seen as a machine learning
estimator of δ0 as Σ̂W involves the regularized estimator Â(re) of A. However, the
score function ϕls

t is not Neyman orthogonal with respect to the high-dimensional
nuisance parameter η. This implies that a noisy estimation of η0 will introduce bias
in β̂ (LS)

1,h (see, Chernozhukov et al., 2018).

In contrast, β̂ (de−LS)
1,h is the solution to the sample counterpart of the moment condition

E
�

ψdls
t

�

β1,h,η0

�

�

= 0, (4.11)

where
ψdls

t

�

β1,h,η
�

=
�

W1,t −δW2,t

�

�

yt+h −W ′1,tβ1,h −W ′2,tβ2,h

�

,

β2,h = R2

�

Ah
�′

J ′ey , and η0 =
�

β ′2,h, vec
�

δ0

�′
�′

is a high-dimensional (d−1)(p+p2)×1

vector of nuisance parameters6. The score function ψdls
t is Neyman orthogonal with

respect to the high-dimensional nuisance parameter η. As an implication, β̂ (de−LS)
1,h is

less sensitive to noisy estimation of η0.

(v) In our simulation, we have several findings about the high-dimensional bias: (1) the
distribution of student-t test statistics of the debiased estimates has a well-shaped
density similar to the standard Gaussian distribution; see Figure 1. (2) The distribu-
tion of student-t test statistics of the non-debiased estimates deviates noticeably from
the Gaussian distribution. (3) The effect of the bias on the empirical level of Student’s
t-test statistics is most pronounced at shorter horizons and diminishes as the horizon
lengthens; see Figure 2. This is because the value of β2,h declines exponentially to
zero as the projection horizon increases under stationarity (the absolute value of the
maximum eigenvalue of the VAR companion matrix is bounded by unity).

6ey is a d-dimensional unit vector with 1 in the position of yt in the vector wt and 0 elsewhere.
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Fig. 1: The black curve represents the density of the standard Gaussian distribution, the red curve depicts
the fitted density of the debiased least squares (LS) estimate, and the green curve shows the fitted density of
the non-debiased LS estimate. The coefficient of interest is the coefficient of x t on yt+1. The sample size is
n = 240, the dimension of the VAR is d = 120, and the number of simulations is 500. The data generating
process (DGP) is a VAR(2). The values of the VAR coefficients and the covariance matrix are determined in
the same manner as in Figure 3.

Fig. 2: Empirical coverage ratio for debiased and non-debiased LS for the coefficient of x t to yt+1. The
sample size is n = 120, the dimension of the VAR is d = 60, and the number of simulations is 500. The
data generating process (DGP) is a VAR(2). The values of the VAR coefficients and the covariance matrix are
determined in the same manner as in Figure 3.

4.3. Asymptotic variance of de-biased LS estimators

To conduct a statistical test, it is crucial to derive the asymptotic variance and provide a
consistent estimator. Obtaining the asymptotic variance requires disentangling the main
term from the negligible term in the

p
n-normalized estimation error,

p
n
�

β̂
(de−LS)
1,h − β1,h

�

.
Under Assumption 2 and certain restrictions on the growth rate of the number of series d
with respect to the sample size n (see Condition 6.1 below), we show (see Lemma A.4 of
the Appendix) that

p
n
�

β̂
(de−LS)
1,h − β1,h

�

=
�

E
�

W⊥1,tW
′
1,t

�
�−1

 

n−1/2
n−h
∑

t=p

W⊥1,t et,h

!

+ op(1), (4.12)
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so that the asymptotic variance of the de-biased LS estimator is given by7

AVar
�p

nβ̂ (de−LS)
1,h

�

= lim
n→∞

�

E
�

W⊥1,tW
′
1,t

�
�−1

Var

 

1
p

n

n−h
∑

t=p

W⊥1,t et,h

!

�

E
�

W1,tW
⊥
1,t
′�
�−1

(4.13)

= lim
n→∞

(R1Σ
−1
W R′1)ΩW1,h(R1Σ

−1
W R′1),

where ΩW1,h is the long run variance of the regression score function,

ΩW1,h := lim
n→∞

Var

 

n−1/2
n−h
∑

t=p

W⊥1,t et,h

!

= lim
n→∞

∞
∑

k=−∞

E[W⊥1,tW
⊥′
1,t+ket,het+k,h].

Analogous to conventional time series literature, one possible consistent estimator of the
asymptotic variance AVar

�p
nβ̂ (de−LS)

1,h

�

could be obtained by replacing each term within the
expression on the right-hand side of the second equality of Equation (4.13) with its sample
counterpart. Note that the long-run variance matrix ΩW1,h estimate may not be positive
semidefinite if it is computed simply by summing up all lead-lag autocovariances at some
truncated bandwidth. This motivates the use of HAC-type covariance matrix. Therefore,
researchers could, for instance, choose Newey-West estimates for the sample regression
score function Ŵ⊥1,t êt,h, where Ŵ⊥1,t is given by Equation (4.6) and êt,h = yt+h− β̂hWt and β̂h

is selected from (Â(re))h. A consistent estimator of the asymptotic variance of the de-LS is
then given by

ÕAVar
(hac) �p

nβ̂ (de−LS)
1,h

�

= (R1Σ̂
−1
W R′1)Ω̂

(hac)
W1,h (R1Σ̂

−1
W R′1), (4.14)

where Ω̂(hac)
W1,h is some consistent HAC estimator of ΩW1,h.

5. De-biased two-stage estimation

This subsection proposes a two-stage approach to identify βh. The introduction of this sec-
ond approach is motivated by potential drawbacks of the de-biased least squares estimation
with HAC-type inference. In fact, as we will argue in the simulation section, the de-biased
LS with HAC-type inference exhibits size distortion, especially for longer horizons. This is
due to poor estimation of lead-lag autocovariances that appear in the long-run variance.
Here, we extend the two-stage approach originally proposed by Dufour and Wang (2024)
from a low-dimensional to a high-dimensional setting. This approach provides two poten-
tial gains. First, it offers a potential efficiency gain as it can be viewed as an instrumental
variable approach. Second, it eliminates the need to correct for serial correlation in the
variance estimation at the cost of a certain restriction on the VAR innovations, this restric-
tion being satisfied for a wide range of innovation processes. We start by presenting the

7Note that ΣW is a dp×dp matrix. Since we are in a high-dimensional setting, d is allowed to go to infinity
in our asymptotic regime and therefore implicitly depends on the sample size n. These arguments justify the
presence of the limit sign on the right-hand side of the second equality in Equation (4.13).

13



two-stage identification strategy.

5.1. Two-stage identification

If weak exogeneity condition holds for ut and the covariance matrix Σu is of full rank, then

PL

�

yt+h − β ′hWt |Ut

�

= 0 (5.1)

where Ut = (u′t , u′t−1, · · · , u′t−p+1)
′. Here, the variable Ut serves as instrumental variables to

Wt . It yields an alternative moment-based identification method for the projection coeffi-
cients,

βh = E[UtW
′
t ]
−1E[Ut yt+h] (5.2)

where E[UtW
′
t ] and E[Ut yt+h] have explicit form containing the covariance matrix of the

innovation process and the reduced-form impulse response functions,

E[UtW
′
t ] = (Ip ⊗Σu)Ψ(p), (5.3)

E[Ut yt+h] = (Ip ⊗Σu)[Ψ
′
h,Ψ ′h+1, · · · ,Ψ ′h+p−1]

′v1, (5.4)

and Ψ(p) is a p × p block matrix whose i j-th block is a d × d matrix of Ψ ′i− j for i ≥ j and
zero otherwise; and Ψh = JAhJ ′. It is easy to check that E[UtW

′
t ] is of full rank as long as

Σu is non-singular. Analogous to the IV identification in static model, the full rankness of
Σu implies there exists no under-identification, that is, the number of valid instruments is
identical to the number of variables.

The parameter of interest β1,h is identified by applying the Frisch–Waugh–Lovell theo-
rem,

β1,h = E[U⊥1,tW
′

1,t]
−1E[U⊥1,t yt+h], (5.5)

where U⊥1,t := U1,t − ΓU2,t , U1,t is the residual corresponding to regressor of interest W1,t ,
U1,t = R1Ut , and U2,t is the residual corresponding to HD control variable W2,t , U2,t = R2Ut .
Notice that U⊥1,t is a linear transformation of U1,t , U2,t , such that the appropriation of being
a valid instrument for W1,t implies that U⊥1,t being orthogonal to the control variable W2,t .
Therefore, the parameter Γ is identified through the second moment,

Γ = E[U1,tW
′
2,t]E[U2,tW

′
2,t]
−1 (5.6)

which is derived from the moment condition PL

�

U1,t − ΓU2,t |W2,t

�

= 0. For matrix algebra,
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we denote Γ̄R = [I ,−Γ ][R′1, R′2]
′ and thereby we could rewrite U⊥1,t as a rotated Ut ,

8

U⊥1,t = [I ,−Γ ][U
′
1,t , U ′2,t]

′ = Γ̄RUt = (R1Σ
−1
UW R′1)

−1R1Σ
−1
UW Ut . (5.7)

5.2. De-biased two-stage estimator

We provide a de-biased two-stage estimator. Denote ΣUW := E[UtW
′
t ].

Step 1: We use the explicit formula (5.3) to obtain an estimator of the matrix ΣUW ,
denoted as Σ̂UW . The matrixΣUW consists ofΨh whose estimates are obtained through
regularized slope coefficient estimates Â(re)

1:p , such that Ψ̂h = J
�

Â(re)
�h

J ′.

Step 2: Estimate U⊥1,t through (5.7):

Û⊥1,t = (R1Σ̂
−1
UW R′1)

−1R1Σ̂
−1
UW Ût (5.8)

where Σ̂UW is from Step 1, and Ût = (û′t , û′t−1, · · · , û′t−p+1)
′, and ût = wt−

∑

i Â(re)
i wt−i.

Step 3: Compute the two-stage estimate of β1,h,

β̂
(2S)
1,h =

�

∑

t

Û⊥1,tW
′
1,t

�−1�
∑

t

Û⊥1,t yt+h

�

. (5.9)

Step 4: Compute the de-biased two-stage estimate of β1,h,

β̂
(de−2S)
1,h = β̂ (2S)

1,h −
�

∑

t

Û⊥1,tW
′
1,t

�−1�
∑

t

Û⊥1,tW
′
2,t β̂2,h

�

(5.10)

where β̂2,h is selected from J
�

Â(re)
�h

.

Remark 5.1.

(i) The covariance matrix ΣUW in finite samples can be readily computed through the
sample covariance of Ût and Wt , where the Ût could be the stacked Least Squares
VAR residuals. However, as illustrated in Dufour and Wang (2024), it is still recom-
mended to estimate ΣUW using the explicit formula. It is because the matrix ΣUW has

8Here is the matrix algebra to support (5.7):

U⊥1,t =[I ,−Γ ]RUt

=
�

[I , 0](RΣUW R′)−1[I , 0]′
�−1 �

[I , 0](RΣUW R′)−1
�

RUt
�

Use block matrix inverse formula: [I ,−Γ ] =
�

[I , 0](RΣUW R′)−1[I , 0]′
�−1 �

[I , 0](RΣUW R′)−1
�

�

=
�

R1Σ
−1
UW R′1

�−1 �
R1Σ

−1
UW Ut

�

.
�

Since RR′ = I , then [I , 0](R′)−1 = R1.
�
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a specific structure: it is a lower triangular matrix and, more precisely, a block Toeplitz
matrix, meaning each diagonal from top-left to bottom-right (main and others) con-
tains identical blocks. Although the sample covariance of Ût and Wt can produce con-
sistent results, it often results in upper triangular part of the matrix being non-zero,
and the block matrices are not identical on each diagonal.

(ii) Note that Step 4 is crucial for obtaining debiased two-stage estimates. The bias intro-
duced by high dimensionality is analogous to that in least squares estimation. There-
fore, it is essential to remove this bias.

β̂
(2S)
1,h =

�

∑

t

Û⊥1,tW
′
1,t

�−1�
∑

t

Û⊥1,t yt+h

�

=
�

∑

t

Û⊥1,tW
′
1,t

�−1�
∑

t

Û⊥1,t

�

β ′1,hW1,t + β
′
2,hW2,t + et,h

�

�

= β1,h +
�

∑

t

Û⊥1,tW
′
1,t

�−1�
∑

t

Û⊥1,t et,h

�

+
�

∑

t

Û⊥1,tW
′
1,t

�−1�
∑

t

Û⊥1,tW
′
2,tβ2,h

�

.

(iii) The de-biased two-stage estimator β̂ (de−2S)
1,h is the solution to the sample counterpart

of the moment condition
E
�

ψd2s
t

�

β1,h,η0

�

�

= 0, (5.11)

where9

ψd2s
t

�

β1,h,η
�

=
�

R1 − ΓR2

�

p−1
∑

j=0

ẽp( j+1) ⊗ Id

�

wt− j − JAWt− j−1

�

�

yt+h −W ′1,tβ1,h −W ′2,tβ2,h

�

,

Γ0 := E[U1,tW
′
2,t]

�

E[U2,tW
′
2,t]
�−1

, β2,h = R2

�

Ah
�′

J ′ey , andη0 =
�

β ′2,h, vec
�

Γ0
�′

, vec
�

A
�′
�′

is a high-dimensional [(d−1)(p+p2)+d2p2]×1 vector of nuisance parameters. Note
that the score function ψd2s

t is Neyman orthogonal with respect to the nuisance pa-
rameter η.

(iv) One crucial aspect in demonstrating the asymptotic distribution for de-biased two-
stage estimators is the negligibility of the bias caused by using the estimated residual
ût as instruments. This has been proven in the low-dimensional case by Dufour and
Wang (2024), showing that the estimation bias for the VAR residual (ût−ut) does not
affect the two-stage estimator (5.9) at the

p
n-level asymptotically. In the subsequent

section, we will elaborate on how the estimation bias of the VAR residual has asymp-
totically negligible effect on two-stage estimates in a high-dimensional framework.

5.3. Asymptotic variance of de-biased two-stage estimators

Analogous to the derivation of the asymptotic variance for de-biased Least Square estima-
tors, obtaining the asymptotic variance of de-biased two-stage estimators requires disen-
tangling the main term from the negligible term in the

p
n-normalized estimation error,

9 ẽp j , j = 1, . . . , p denote the d-dimensional unit vectors, where ẽp j containts 1 at the jth position and 0
elsewhere.
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p
n
�

β̂
(de−2S)
1,h − β1,h

�

. Under Assumption 2 and certain restrictions on the growth rate of the
number of time series d with respect to the sample size n, we show that

p
n
�

β̂
(de−2S)
1,h − β1,h

�

=
�

E
�

U⊥1,tW
′
1,t

�
�−1

 

n−1/2
n−h
∑

t=p

U⊥1,t et,h

!

+ op(1), (5.12)

so that the asymptotic variance of the de-biased two-stage estimator is given by

AVar
�p

nβ̂ (de−2S)
1,h

�

= lim
n→∞

�

E
�

U⊥1,tW
′
1,t

�
�−1

Var

 

n−1/2
n−h
∑

t=p

U⊥1,t et,h

!

�

E
�

U⊥1,tW
′
1,t

�
�′−1

(5.13)

= lim
n→∞

(R1Σ
−1
UW R′1)ΩU1,h(R1Σ

′−1
UW R′1),

where ΩU1,h is the long run variance of the regress score function,

ΩU1,h := lim
n→∞

Var(n−1/2
∑

t

U⊥1,t et,h) = lim
n→∞

∞
∑

k=−∞

E[U⊥1,t U
⊥′
1,t+ket,het+k,h].

Analogous to conventional time series literature, one possible consistent estimate of the
variance AVar

�p
nβ̂ (de−2S)

1,h

�

could be obtained by replacing each term within the expression
on the right-hand side of the second equality of Equation (5.13) with its sample counterpart.
One advantage of two-stage estimation method is to obviate HAC-type covariance matrix.
We present a heteroskedastic robust method to compute the covariance matrix following the
general HAC-type estimates with a slightly stronger assumption on the innovation process.
HAC/HAR covariance estimates

Practically, researchers can obtain a consistent estimate of the asymptotic variance by
applying some HAC type covariance matrix estimates,

ÕAVar
(hac) �p

nβ̂ (de−2S)
1,h

�

= (R1Σ̂
−1
UW R′1)Ω̂

(hac)
U1,h (R1(Σ̂

−1
UW )
′R′1), (5.14)

where Ω̂(hac)
U1,h is some consistent HAC estimator of ΩU1,h, e.g., Newey-West estimate. Since

the projection error et,h is unobservable, it is replaced by a consistent estimate êt,h, where

êt,h = yt+h − β̂hWt and β̂h = v′1
�

Â(re)
�h

, and Û⊥1,t comes from (5.8).
HC/HR covariance estimates

HAC-type covariance matrix estimates often perform poorly in small samples, particu-
larly regarding the empirical size of statistical tests in linear projection models at horizon
h. The practical application of these estimates is further complicated by the need to choose
an appropriate bandwidth and kernel function. Consequently, it is worthwhile to explore
alternative methods for covariance matrix estimation that rely solely on heteroskedasticity-
robust estimation techniques.

Replacing HAC-type covariance matrix estimation with a heteroskedasticity-robust method
requires adherence to specific conditions. The motivation for HAC estimation is to en-
sure a positive semidefinite covariance matrix, which is not necessarily achieved by simply
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summing all lead-lag autocovariances. Therefore, an alternative method must be found to
transform the regression scores into a serially uncorrelated process, thereby equating the
long-run variance to the variance. This transformation ensures that the sample variance
matrix is inherently positive semidefinite.

By (5.7), U⊥1,t = (R1Σ
−1
UW R′1)

−1R1Σ
−1
UW Ut . Then, the long run variance matrix ΩU1,h can

be rewritten as

ΩU1,h = (R1Σ
−1
UW R′1)

−1R1Σ
−1
UWΩU ,hΣ

′−1
UW R′1(R1Σ

−1
UW R′1)

′−1 (5.15)

by defining

ΩU ,h :=
�

lim
n→∞

∞
∑

k=−∞

E[Ut U
′
t+ket,het+k,h]

�

. (5.16)

The critical part of estimating ΩU1,h is obtaining the sample estimator of ΩU ,h, which is the
long run variance of the sequence Ut et,h,

Ut et,h = (u
′
t , u′t−1, · · · , u′t−p+1)

′et,h. (5.17)

Following the method proposed in Dufour and Wang (2024), we consider an alternative
sequence, denoted as

st := (et,h, et+1,h, · · · , et+p−1,h)
′ ⊗ ut . (5.18)

where the sequence st is constructed by replacing each component ut−iet,h (for i = 0,1, . . . , p−
1) in the vector Ut et,h with its corresponding i-period lead, ut+iet+i,h. For example, the
first component, ut et,h, remains unchanged; the second component, ut−1et,h, is replaced by
ut et+1,h; and this pattern continues for the remaining terms

Since st and Ut et,h encapsulate the same underlying terms across different time periods,
their long-run variance matrices are equivalent. As a result, the long-run variance of both
Ut et,h and st yields identical matrices:

∞
∑

k=−∞

E[sts
′
t+k] = ΩU ,h. (5.19)

To avoid the need for correcting serial correlation in the projection error and to provide
robust statistical inference, we provide regularity conditions that guarantee the process st

is serially uncorrelated. Thereby the long run variance of st is identical to its covariance
matrix.

Since ut is the current shock and (et,h, et+1,h, · · · , et+p−1,h) contains future shocks only.
If certain conditions are met, for instance, ut is i.i.d., then we could derive that the process
st is serially uncorrelated. The serial uncorrelation for the i.i.d. case can be easily verified
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by the Law of Iterated Expectations,

E[sts
′
τ
] = E[E[stsτ | ut+1, ut+2, · · · ]]
= E[(et,h, et+1,h, · · · , et+p−1,h)⊗E[ut | ut+1, ut+2, · · · ]s′

τ
]

= 0

(since E[ut | ut+1, ut+2, · · · ] = 0 by i.i.d. assumption)

(5.20)

for all t < τ. However, the i.i.d. assumption may be too restrictive, even though it is widely
seen in high dimensional time series. We consider a weaker and more general condition.

Assumption 1.
For all t ≥ 1, let

(i) (m.d.s. assumption) E[ut | {us}s<t] = 0, almost surely.

(ii) (some fourth moment assumption) E[(utu
′
τ
)⊗ (uτ+ku′

τ+k)] = 0, ∀τ > t, k > 0.

Assumption 1(i) constrains ut to be a martingale difference sequence, a common condition
in the time series literature. Assumption 1(ii) imposes a condition on a specific fourth
moment of the disturbances, which is crucial for ensuring the serial uncorrelation of st . This
condition is met by a wide array of disturbance processes. For instance, it holds when (1)
ut is independent and identically distributed, (2) ut is mean-independent, (3) ut follows an
ARCH(1) process with Gaussian errors, or (4) ut is a conditionally homoskedastic process.
However, this condition may not hold if ut follows an ARCH(1) process with skewed errors.
In such cases, researchers should employ HAC covariance matrix estimates rather than HC
estimates.

We briefly illustrate the sufficiency of Assumption 1 for the serial uncorrelation of the
process st .

First, we write explicitly the autocovariance of the process st by expanding its defini-
tion,

E[sts
′
τ
] = E[(et,h, et+1,h, · · · , et+p−1,h)(eτ,h, eτ+1,h, · · · , eτ+p−1,h)

′ ⊗ utu
′
τ
]. (5.21)

Then, it is easy to see that an equivalent condition for this expectation to be equal to
zero is

E[sts
′
τ
] = 0 ⇔ E[utu

′
τ
⊗ et+i,heτ+ j,h] = 0, (5.22)

for all i, j = 0,1, · · · , p− 1.
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Recall that et,h =
∑h

m=1 v′1Ψh−mut+m. Then,

E[utu
′
τ
⊗ et+i,heτ+ j,h]

=E



utu
′
τ
⊗

 

h
∑

m=1

v′1Ψh−mut+i+m

! 

h
∑

n=1

v′1Ψh−nuτ+ j+n

!





=E



utu
′
τ
⊗ v′1

 

h
∑

m=1

h
∑

n=1

Ψh−mut+i+mu′
τ+ j+nΨ

′
h−n

!

v1





(5.23)

Without loss of generality, suppose t < τ. If t + i +m = τ+ j + n, then Assumption 1
(ii) ensures that

E
�

utu
′
τ
⊗ (v′1Ψh−mut+i+mu′

τ+ j+nΨ
′
h−nv1)

�

= 0, (5.24)

since t + i +m= τ+ j + n> τ > t.
If t + i +m < τ+ j + n, then Assumption 1 (i) with Law of Iterated Expectation (LIE)

ensures that

E
�

utu
′
τ
⊗ (v′1Ψh−mut+i+mu′

τ+ j+nΨ
′
h−nv1)

�

= 0, (5.25)

since τ+ j + n>max(t + i +m,τ, t).
If t + i +m > τ+ j + n, similarly, Assumption 1 (i) with Law of Iterated Expectation

(LIE) ensures that

E
�

utu
′
τ
⊗ (v′1Ψh−mut+i+mu′

τ+ j+nΨ
′
h−nv1)

�

= 0, (5.26)

since t + i +m> τ+ j + n> τ > t.
Therefore, combining the results of (5.24)-(5.26), Assumption 1 ensures that st is se-

rially uncorrelated. Due to the equality between the long run variance of st and the matrix
ΩU ,h by (5.19), Assumption 1 yields the matrix ΩU ,h equals to the covariance matrix of st ,

ΩU ,h = Var(st). (5.27)

Thus, it entails this is an alternative method to estimate the Long run variance ΩU ,h through
the sample variance of st:

Ω̂
(HC)
U1,h = (R1Σ̂

−1
UW R′1)

−1R1Σ̂
−1
UW
ÓVar(ŝt)Σ̂

′−1
UW R′1(R1Σ̂

−1
UW R′1)

′−1 (5.28)

where ÓVar(ŝt) =
1

n−h

∑

t ŝt ŝ
′
t , ŝt = (êt,h, êt+1,h, · · · , êt+p−1,h)⊗ût , ût = wt−Φ̂

(re)
1:p Wt−1, and êt,h is

obtained from VAR residuals, as in the HAC-type variance estimation. The heteroskedasticity-
robust covariance matrix for two-stage estimates can be computed as

ÕAVar
(HC)
(
p

nβ̂ (de−2S)
1,h ) = R1Σ̂

−1
UW
ÓVar(ŝt)Σ̂

′−1
UW R′1. (5.29)
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6. Asymptotic properties of estimators

This section is devoted to the derivation of the asymptotic properties of both estimators.
First, we derive the rate of some auxiliary terms that are needed to establish asymptotic
normality in the sequel. We show that each of the two estimators is asymptotically normal
under certain regularity conditions and restrictions on the growth rate of the number of
series d with respect to the sample size n (see Conditions 6.1 and 6.2 below). We then de-
rive the asymptotic inference for the estimators. In particular, we propose a HAC standard
error for both de-biased estimator. Additionally, we propose an HC standard error for the
de-biased 2S estimaor. Regarding the regularity conditions on the innovation process, the
consistency of the HC standard error requires a slightly stronger assumption (see Assump-
tion 1), which can be viewed as a cost for the convenience of avoiding the HAC standard
error.

6.1. Preliminary results

This section aims to provide the preliminary consistency results required for establishing
the asymptotic normality of the de-biased LS estimate β̂ (de−LS)

1,h and the de-biased 2S esti-

mate β̂ (de−2S)
1,h . Before presenting those results, we first state the assumptions needed. A

sparsity assumption is needed to establish the consistency of Lasso-type regularized estima-
tors, Â(re)

j , j = 1, . . . , p, for VAR slope coefficients A j, j = 1,2, . . . , d, with the corresponding
stacked form Â(re). We consider the Krampe et al. (2023) adaptation of the Bickel and
Levina (2008)’s concept of approximately sparse matrices defined by the following class,
U (k,µ), of row-wise approximately sparse matrices10,

U (k,µ) =

(

B =
�

bi j

�

i=1,...,r, j=1,...,s
∈ Rr×s : max

1≤i≤r

s
∑

j=1

�

�

�bi j

�

�

�

µ

≤ k,∥B∥2 ≤ C <∞

)

.

This class includes the standard exact sparsity class for the special choice of µ = 0, if we

adopt the convention that
∑s

j=1

�

�

�bi j

�

�

�

µ

counts the number of nonzero coefficients in the ith

row of the matrix B for µ= 0. Approximate sparsity is considered by allowing to choose µ
in a flexible way within the interval [0,1).

Various papers have investigated the theoretical properties of l1-regularized estimators
in sparse high-dimensional time series models, including stochastic regressions and transi-
tion matrix estimation in VAR models (see, e.g., Basu and Michailidis, 2015; Adamek et al.,
2023). For this reason, we assume, under the approximate sparsity assumption, the con-
sistency of the regularized estimator bA(re) as specified by part (iii) of Assumption 2 below.
Assumption 2 collects all the regularity conditions required to obtain the consistency of co-
variance estimators Σ̂u, Σ̂W , and Σ̂UW . Sufficient conditions to obtain asymptotic normality
and consistency of variance estimators of both de-biased estimators are given as well. As-
sumption 2 is partially similar to Assumption 1 of Krampe et al. (2023) in deriving the
consistency of the (Lasso) regularized estimator of the structural impulse response.

10Note that in this definition, k potentially depends on the dimensions r and s of the matrix B. It measures
the degree of row-wise approximate sparsity. The lower k is, the sparser the matrix B is (row-wise).
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Assumption 2.

(i) Row-wise and Column-wise Approximate Sparsity: A ∈U
�

kA,µ
�

and A′ ∈U
�

kA,µ
�

for some µ ∈ [0, 1) and kA > 0.

(ii) Stability Conditions: There exists ϕ ∈ (0,1) such that ρ(A)≤ ϕ and for any m ∈ N,

∥Am∥2 = O
�

ϕm
�

and ∥Am∥l = O
�

kAϕ
m
�

for l ∈ {1,∞}.

(iii) Convergence Rate of the Lasso-type Regularized Estimator: bA(re) satisfies,







bA(re) −A






l
= Op

�

k1.5
A

�

νn

n

�(1−µ)/2
�

for l ∈ {1,∞}.

(iv) Convergence Rate of the Sample Covariance of Innovations: The sample covariance
∑n

t=1 utu
′
t

�

n satisfies for all U , V ∈ Rd×d with ∥U∥2 = 1= ∥V∥2,









1
n

n
∑

t=1

U
�

utu
′
t −Σu

�

V









max

= Op

�
Æ

ν̃n/n
�

.

(v) Moment Restrictions: For all j = 1, . . . , d, it holds true that E|ẽ′jdut |q ≤ C <∞ for
some q > 4, where e jd , j = 1, . . . , d, are d-dimensional unit vectors.

(vi) Stability of the Inverse of Covariance Matrices ΣW and ΣUW : There exist two sample-
dependent functions kW := kW (n) and kUW := kUW (n) such that



Σ−1
W





∞ = O
�

kW

�

and


Σ−1
UW





∞ = O
�

kUW

�

, with 1/kW = o(1) and 1/kUW = o(1). Also,
1
C
≤


Σ−1
W





2 ≤ C,

and
1
C
≤


Σ−1
UW





2 ≤ C.

(vii) Convergence Rate of HAC Estimators and Boundedness of Eigenvalues: There exist

a certain function ν̄n := ν̄(d, p, q, n) such that






bΩ
(hac)
W1,h −ΩW1,h







max
= Op

�p

ν̄n/n
�

and






bΩ
(hac)
U1,h −ΩU1,h







max
= Op

�p

ν̄n/n
�

. Also,
1
C
≤ λmin

�

ΩW1,h

�

≤ λmax

�

ΩW1,h

�

≤ C, and

1
C
≤ λmin

�

ΩU1,h

�

≤ λmax

�

ΩU1,h

�

≤ C .

Assumption 2(i) imposes both row-wise and column-wise approximate sparsity on the VAR
matrix coefficient A. Since A is a dp-dimensional square matrix, kA depends on d and
thus implicitly depends on the sample size n through d in a high-dimensional context. kA

captures the degree of row-wise sparsity of the matrices A and A′. A sparse A will be asso-
ciated with a low kA. We expect kA to be larger than 1 and to increase with d. Assumption
2(ii) specifies the standard stability condition of the VAR system. This assumption implies,
in part, that the process

�

Wt , t ∈ Z
	

possesses a geometrically decaying functional depen-
dence coefficient.

Assumption 2(iii) provides the rate for estimating the VAR slope coefficients. It assumes
consistency of the regularized estimates Â(re) and

�

Â(re)
�′

in the sense of the maximum ab-
solute raw sum norm. The rate of convergence is formulated in a flexible way, allowing for
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estimating the VAR slope coefficients using alternative lasso-type approaches, such as adap-
tive lasso. This rate holds under the sparsity assumption, and the convergence will be faster
for a sparser matrix A (i.e., for lower kA). It is evident that lasso-type regularized estimates
may fail to be consistent or may converge very slowly if sparsity is wrongly assumed, such
that k1.5

A ν
(1−ν)/2
n tends to be large compared to n(1−ν)/2. The term νn := ν(d, p, q, n), where

ν is an increasing function of d. Its specific form depends on the regularization approach
used for estimating A, as well as on the number of finite moments q of the innovations ut .
As νn lowers the convergence speed of Â(re) to A, it can be thought of as the cost of using
regularization to estimate the high-dimensional object A. As emphasized by Krampe et al.
(2023), if the innovation process

�

ut , t ∈ Z
	

has only q moments, then the desired rate is
νn = log(dp) + (ndp)2/q, and in particular, νn = log(dp) in the case of sub-Gaussian in-
novations. Also, note that if the naive regularized estimator Â(re) does not converge at the
rate specified in Assumption 2(iii), thresholding can be used to obtain an estimator with
the desired rate (see Cai and Liu, 2011; Rothman et al., 2009). Thus, if Â(re) is defined as
in Equation (3.1), then a suitable candidate satisfying Assumption 2(iii) is the Thresholded
Adaptive LASSO, denoted by Â(thr), which is given by

Â(thr)
k = THRλ(Â

(re)
k ) :=

�

THRλ(Â
(re)
i j,k)

�

i, j=1,2,··· ,d
, k = 1, 2, · · · , p. (6.1)

where THRλ(z) = z
�

1− |λ/z|ν
�

+ with ν ≥ 1. Soft thresholding (ν = 1) and hard thresh-
olding (ν =∞) represent boundary cases of this function (see Krampe and Paparoditis,
2021 and Section 4.1 in Krampe et al., 2023).

Assumption 2(iv) outlines the requirement for entry-wise consistency of the sample
covariance of the innovations. This assumption comes directly from the number of finite
moments (see Assumption 2(v)) and does not require any sparsity assumption on the con-
temporaneous covariance matrix of innovations, Σu. Additionally, ν̃n := ν̃(d, q, n) repre-
sents the cost associated with increasing dimensionality. Specifically, if only q moments of
the innovations are finite, then the desired rate is ν̃n = log(d)+(nd)4/q and for sub-Gaussian
innovations, we have ν̃n = log(d).

Note that Assumptions 2(iii) and (iv) implicitly impose restrictions on the rate at which
d grows to infinity relative to the sample size n. To illustrate, assume that d and kA scale
as d = O(nφ) and kA = O(nψ), where φ > 0 and ψ > 0. Simple calculations indicate
that ν̃n/n → 0 implies φ < q/4 − 1 if q > 4. Similarly, k3/(1−µ)

A (νn/n) → 0 implies that
ψ< (1−µ)(1− 4/q)/3 and φ < q

�

1− 3ψ/(1−µ)
� �

4− 1. These conditions imply, in the
case of exact sparsity (µ= 0), thatψ< (1−4/q)/3 and φ < q

�

1− 3ψ
� �

4−1 if q > 4. The
restriction on the growth rate of d will be less stringent if the innovations have moments of
higher orders (i.e., if q is large). For example, if q = 8 (i.e., ψ < 1/6) and ψ = 1/7, then
the restriction on the growth rate of d with respect to n is φ < 1/7. Similarly, if q = 16
(i.e., ψ< 1/4) and ψ= 1/5, then the restriction φ < 3/5, is less stringent.

Assumption 2(vi) states additional conditions for deriving the convergence rate of the
inverse of the covariance matrix estimators Σ̂W and Σ̂UW . kU and kUW can be seen as the
costs of inverting dp-square matrices ΣW and ΣUW when allowing for increasing dimen-
sionality. Additionally, Assumption 2(vi) implies that there exists a constant C such that
Cλmin

�

ΣW

�

≥ 1/kW = o(1) and Cλmin

�

ΣUW

�

≥ 1/kUW = o(1). Thus, the matrices ΣW and
ΣUW are non-singular in finite sample, but their inverses might be slightly unstable in an
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asymptotic regime where d goes to infinity with n. The degree of stability of these inverses
depends on how fast the functions kU and kUW go to infinity with the sample size. As we ex-
pect kU and kUW to increase very slowly with the sample size, we will end up with matrices
ΣW and ΣUW that are relatively non-singular so that their inverses exist for large n.

Finally, Assumption 2(vii) specifies the convergence rate of the HAC estimators Ω̂hac
W1,h

and Ω̂hac
U1,h. ν̄n := ν̄(d, p, q, n) can be thought of as the cost of allowing the dimension d to in-

crease and using regularization to obtain the estimator Â(re) that enters the computation of
Ω̂hac

W1,h and Ω̂hac
U1,h. This assumption is useful to show the consistency of the variance estimator

of the de-biased estimators. Additionally, Assumption 2(vii) imposes some restrictions on
the structure of the long-run variances ΩW1,h and ΩU1,h. In particular, it requires the eigen-
values of both matrices to be bounded above and below, away from zero, by a constant.

Under these assumptions, we have the following consistency results for the covariance
matrix estimators Σ̂u, Σ̂W , and Σ̂UW .

Theorem 6.1 (Consistency results).
Let bΣW and bΣUW denote the regularized estimator of ΣW and ΣUW , respectively, using explicit
formulas (4.2) and (5.3). Under Assumption 2, the following assertions are true:

(i)






bΣu −Σu







∞
= Op

�

d
h

k3
A

�

νn/n
�1−µ

+
Æ

ν̃n/n
i

�

;

(ii)






bΣW −ΣW







∞
= Op

�

dk2
A

n

k2.5
A

�

νn/n
�(1−µ)/2

+
Æ

ν̃n/n
o

�

;

(iii)


Σ̂UW −ΣUW





∞ = Op

�

dkA

n

k1.5
A

�

νn/n
�(1−µ)/2

+
Æ

ν̃n/n
o

�

.

Remark 6.1. Note that the convergence rates of all those covariance estimators depend on
both the convergence rate of the sample covariance of the innovations,

∑n
t=1 utu

′
t/n, and

the convergence rate of the regularized estimator Â(re) of the VAR matrix coefficient A. In
all cases, the convergence speed also depends on the growth rate of the number of series d
relative to the sample size n.

6.2. Asymptotic theory for de-biased LS estimator

In this section, we derive asymptotic normality and properties for statistical inference for
the de-biased LS estimator defined by Equation (4.8). We show that the de-biased LS esti-
mator β̂ (de−LS)

1,h is asymptotically normal and derive the consistency of its variance estimator
defined by Equation (4.14) under certain restrictions on the growth rate of d relative to n
(see Conditions 6.1 and 6.2). Importantly, we show under the conditional homoskedastic
martingale difference sequence (m.d.s.)11 assumption that the asymptotic variance defined
by Equation (4.13) has a closed-form expression in terms of a truncated sum. Even in this
particular case, we recommend using a kernel estimator, in the spirit of HAC estimation, to
avoid situations where the covariance matrix estimator may be non-positive semi-definite
due to truncation. Conditions 6.1 and 6.2 implicitly restrict the growth rate of d relative

11Note that the following two conditions should be satisfied for ut to be a conditional homoskedastic m.d.s.:
(i) E

�

ut | ut−1, ut−2, · · ·
�

= 0 and (ii) E
�

utu
′
t | ut−1, ut−2, · · ·

�

= Σu.
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to n to ensure the asymptotic normality and consistency of the variance estimator for the
de-biased LS. These conditions impose more stringent restrictions on d compared to those
required for the consistency of the regularized estimator Â(re) as stated in Assumption 2(iii).

In order to derive the asymptotic distributional theory, we impose additional standard
regularity conditions on the innovation process and observables.

Assumption 3 (Regularity conditions).

(i) Strong mixing condition: ut and Wt are strong mixing (α-mixing) processes with a
mixing size of −r/(r − 2), where r > 2.

(ii) Boundedness of the moments of innovations: For any λ ∈ Rd×1 with ∥λ∥2 = 1,
E|λ′ut |2r+δ < c0 <∞, for some constants c0 and δ > 0.

Assumption 3 is a standard regularity condition on the time-dependence of the VAR in-
novation process and observables. The strong mixing condition (Assumption 3(i)) and
the boundedness of moments (Assumption 3(ii)) are important for asymptotic normality.
Moreover, Assumption 3 implies that there is a trade-off between the number of moments
possessed by the innovation process and the memory of the series ut and Wt . In fact, allow-
ing for more dependence (i.e., for large r) will impose a strong restriction on the existing
moments. In contrast, allowing for less dependence (i.e., for low r) will relax the restric-
tion on the number of moments. For example, if the mixing coefficient α(k) exponentially
decays with k (e.g., α(k) = c1ρ

k, for 0 < ρ < 1 and c1 a non-negative constant), then r
can be set arbitrarily close to 2, so that Assumption 3(ii) just requires the existence of more
than 4 moments, as in Assumption 2(v). Furthermore, Assumption 3 is less restrictive than
the i.i.d innovation assumption impose, for example, by Krampe et al. (2023). It allows for
a large range of time-dependent, although uncorrelated, innovation processes ut , such as
strongly mixing martingale difference sequences (e.g., ARCH and GARCH processes under
certain restrictions).

Condition 6.1. ν̃1/2
n dk2

AkW

n

k2.5
A

�

νn/n
�(1−µ)/2

+
�

ν̃n/n
�1/2

o

= o(1).

This condition imposes an implicit restriction on the growth rate of d relative to n to ensure
that the higher-order term in the

p
n-normalized estimation error,

p
n
�

β̂
(de−LS)
1,h − β1,h

�

, is
effectively negligible. The asymptotic behavior of the de-biased LS estimator is then driven
by the main term as specified in Equation (4.12). The following theorem establishes the
asymptotic normality of the de-biased LS estimator.

Theorem 6.2 (Asymptotic normality of the de-LS estimator).
Under Assumptions 2 and 3, if the number of series d grows with n such that Condition 6.1 is
satisfied, then for any vector v ∈ Rp such that ∥v∥1 = 1,

p
nv′(β̂ (de−LS)

1,h − β1,h)

s.e.
β̂
(de−LS)
1,h

(v)
d
−→N (0,1), as n→∞, (6.2)

where s.e.
β̂
(de−LS)
1,h

(v)2 := v′AVar
�p

nβ̂ (de−LS)
1,h

�

v.
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Condition 6.2 imposes an additional restriction to obtain consistency of the variance esti-
mator for de-biased LS, as stated by the following theorem.

Theorem 6.3 (Consistency of the variance estimator for de-LS).
Under Assumptions 2 and 3, if the number of series d grows with n such that Conditions 6.1
and 6.2 are satisfied, then for any vector v ∈ Rp such that ∥v∥1 = 1,

�

�

�

�

Ós.e.(hac)

β̂
(de−LS)
1,h

(v)2 − s.e.
β̂
(de−LS)
1,h

(v)2
�

�

�

�

p
−→ 0, (6.3)

where Ós.e.(hac)

β̂
(de−LS)
1,h

(v)2 := v′ÕAVar
(hac) �p

nβ̂ (de−LS)
1,h

�

v.

Furthermore, the result (6.2) in Theorem 6.2 still holds if s.e.
β̂
(de−LS)
1,h

(v) is replaced by its

estimator, Ós.e.(hac)

β̂
(de−LS)
1,h

(v).

If in addition, the VAR error term ut is a conditional homoskedastic m.d.s, then s.e.
β̂
(de−LS)
1,h

(v)

has a closed-form expression of the form12,

s.e.
β̂
(de−LS)
1,h

(v)2 + o(1) =
h−1
∑

j,l=0

e′yΨ jΣuΨ
′
l ey v′R1Σ

−1
W ΣW (l − j)Σ−1

W R′1v, (6.4)

and can be consistently estimated using Σ̂u, Ψ̂ j, and Σ̂W ( j).

Corollary 6.4 (Limiting distribution of the Wald test statistic).
If Assumptions 2 and 3 hold and the number of series d grows with n such that Conditions 6.1
and 6.2 are satisfied, then under the null hypothesisH0 : β1,h = 0, the Wald test statistic

W (de−LS)
n := nβ̂ (de−LS)′

1,h

�

ÕAVar
(hac) �p

nβ̂ (de−LS)
1,h

�

�−1

β̂
(de−LS)
1,h

d
−→ χ2(p), as n→∞.

6.3. Asymptotic theory for de-biased 2S estimator

In this section, we derive the asymptotic normality and properties for statistical inference
for the de-biased 2S estimator defined by Equation (5.10). We demonstrate that the de-
biased 2S estimator β̂ (de−2S)

1,h is asymptotically normal and derive the consistency of the HAC
variance estimator, defined by Equation (5.14), under certain restrictions on the growth rate
of d relative to n (see Conditions 6.3 and 6.4). Furthermore, we establish the consistency of

12The notation ΣW (r) in (6.4) refers to the lag-r autocovariance matrix of Wt and has the closed-form
representation:

ΣW (r) := E[WtW
′
t−r] =

∞
∑

j=0

A j+r J ′ΣuJ(A′) j = Arvec−1
dp

�

(Id2 p2 −A⊗A)−1vec(J ′ΣuJ)
�

,

for r ≥ 0 and ΣW (r) = ΣW (−r)′ for r < 0.
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the HC variance estimator, defined by (5.29), under additional restrictions on the structure
of the innovations ut (see Assumptions 1 and 4). Note that Conditions 6.3 and 6.4 required
for the asymptotic results of the de-biased 2S estimator are slightly less stringent than those
required for deriving properties of the de-biased LS estimator.

Condition 6.3. ν̃1/2
n dkAkUW

n

k1.5
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�

νn/n
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+
�
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�1/2

o

= o(1).

Condition 6.3 sets a constraint on how d grows relative to n to ensure that the higher-order
term in the

p
n-normalized estimation error,

p
n
�

β̂
(de−2S)
1,h − β1,h

�

, becomes negligible. Con-
sequently, the asymptotic behavior of the de-biased 2S estimator is governed by the main
term specified in Equation (5.12). The following theorem demonstrates the asymptotic
normality of the de-biased 2S estimator.

Theorem 6.5 (Asymptotic normality of the de-2S estimator).
Under Assumptions 2 and 3, if the number of series d grows with n such that Condition 6.3 is
satisfied, then for any vector v ∈ Rp such that ∥v∥1 = 1,

p
nv′(β̂ (de−2S)

1,h − β1,h)
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β̂
(de−2S)
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(v)
d
−→N (0,1), as n→∞, (6.5)

where s.e.
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Condition 6.4 imposes an extra constraint on the growth rate of d necessary for the consis-
tency of the variance estimators of de-biased 2S, as demonstrated by the following theorem.

Although Assumptions 2 and 3 are sufficient to ensure the consistency of the HAC-type
estimator of the asymptotic variance of the de-biased LS, as defined by Equation (5.14),
the consistency of the HC-type variance estimator, as defined by Equation (5.29), requires
stronger moment restrictions on the innovation process, as stated by Assumption 4 below.

Assumption 4 (Regularity Conditions II).
For any λ ∈ Rd×1 with ∥λ∥2 = 1, it holds that

E
�

�λ′ut

�

�

4r+δ
< c0 <∞,

for some constants c0 and δ > 0, where r is defined as in Assumption 3(i).

Assumption 4 is a stronger version of the regularity condition in Assumption 3(ii). It re-
quires the boundedness of higher moments for the convergence of the sample covariance
matrix of the process st as defined by Equation (5.18).

Theorem 6.6 (Consistency of the variance estimators for de-2S).
Under Assumptions 2 and 3, if the number of series d grows with n such that Conditions 6.3
and 6.4 are satisfied, then for any vector v ∈ Rp such that ∥v∥1 = 1,

�
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�

�
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−→ 0, (6.6)
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where Ós.e.(hac)

β̂
(de−2S)
1,h

(v)2 := v′ÕAVar
(hac) �p

nβ̂ (de−2S)
1,h

�

v.

Furthermore, the result (6.5) in Theorem 6.5 still holds if s.e.
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If, in addition, the VAR error term ut satisfies Assumptions 1 and 4, then
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Corollary 6.7 (Limiting distribution of the Wald test statistic).
If Assumptions 2 and 3 hold and the number of series d grows with n such that Conditions 6.3
and 6.4 are satisfied, then under the null hypothesisH0 : β1,h = 0, the Wald test statistic

W (de−2S)
n := nβ̂ (de−2S)′

1,h

�

ÕAVar
(hac) �p

nβ̂ (de−2S)
1,h

�

�−1

β̂
(de−2S)
1,h

d
−→ χ2(p), as n→∞.

7. Monte Carlo simulations

This section reports the results of Monte Carlo experiment designed to evaluate the finite
sample performance of the Wald test. We consider three cases of VAR(p), p = 2. The
choice of a VAR(2) model is to accommodate more general empirical exercises. Since the
DGP needs to be stationary, we generate the VAR slope coefficients by factorizing the VAR
coefficient polynomial and determining the root matrices:

(I −Λ1 L)(I −Λ2 L)wt = ut (7.1)

where L is the lag operator, Λk is the root matrix, and ut ∼ i.i.d.N(0,Σu), Σi j,u = 0.5|i− j|.
Inspired by the literature on high dimensional VAR, e.g., Miao et al. (2023), we consider
three types of root matrices:

(i) DGP 1 (Tridiagonal root matrix): Λi j,k = 0.3|i− j|+1.

(ii) DGP 2 (Block-diagonal root matrix): Λk is a block diagonal matrix, where Λk =
diag[Si,k] and Si,k is a square matrix of dimension 5. The diagonal entries of Si,k

are fixed with 0.3. For each column of Si,k, we randomly set two of those off-diagonal
entries as −0.2.

(iii) DGP 3 (Random root matrix): We fix the diagonal entries of Λk to be 0.3. In each
column of Λk, we randomly choose 3 out of d − 1 entries and set them to be −0.2.

Once the root matrices are determined, we could obtain the VAR slope coefficients as

A1 = Λ1 +Λ2,

A2 = −Λ1Λ2,
(7.2)
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We fix the number of time series to d = 60. To accommodate the majority of macroeco-
nomic datasets, we consider three cases of dimensionality: n= 120, n= 240, and n= 480,
corresponding respectively to strong, moderate, and slight high-dimensionality.

We considered 1000 Monte Carlo replications. For each simulation, we implement the
de-biased LS estimation, the de-biased two-stage estimation, and the post-double-selection
LASSO estimation for horizon from one to twenty-four. The long run variance matrix of the
regression score function is estimated by ‘getLongRunVar’ command from ‘cointReg’ pack-
age in R program with ‘h’ bandwidth and ‘bartlett’ kernel function. We use ‘HDeconomet-
rics’ package and ‘glmnet’ package in R program to implement adaptive LASSO. The tuning
parameter for the first step LASSO on VAR is chosen as λ=

p

log d/n.

Fig. 3: Size of the Wald test at the 5% nominal level for different horizons. The red, blue, orange, and
green curves correspond to the post-double selection procedure with HAC standard errors, the de-biased
least squares with HAC standard errors, the de-biased two-stage with HAC standard errors, and the de-biased
two-stage with HC standard errors, respectively. The number of time series is d = 60, and the sample size is
n= 120. The horizon is h= 0,1, . . . , 24. The number of replications is 1,000.

Figure 3 provides a comparison of the performance of the Wald test in the case of
strong high-dimensionality (with a sample size of n= 120 and the number of series d = 60)
for different approaches used to perform the test: de-biased least squares with HAC stan-
dard errors, de-biased two-stage with HAC standard errors, de-biased two-stage with HC
standard errors, and the post-double selection procedure with HAC standard errors. We
use the size of the Wald test, approximated by the rejection frequency over the simula-
tion replications, as a measure of performance. As can be seen, the two-stage approach
with heteroskedastic-consistent (HC) robust standard errors outperforms the two-stage or
least-squares approaches with HAC-type standard errors, particularly for large projection
horizons. Indeed, as the projection horizon increases, HC inference provides good size,
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while sizes for HAC-type inference worsen. This size distortion arises because HAC-type
variance estimators tend to become imprecise for higher horizons due to finite sample per-
formance issues, as verified in low-dimensional local projection cases by Montiel Olea and
Plagborg-Møller (2021) and Dufour and Wang (2024). However, this problem is exacer-
bated in our context by high dimensionality. Moreover, our procedures outperform the
post-double-selection procedure with HAC inference for all horizons. Mitigating the degree
of high dimensionality by increasing the sample size to n= 240 and n= 480 leads to similar
results, although the size distortion attenuates and the discrepancy between curves reduces
(see Figures A.1 and A.2 in the Appendix), denoting the convergence of all approaches to-
ward the OLS benchmark for large samples. However, the de-biased two-stage method with
HC standard errors tends to slightly under-reject the null hypothesis for larger samples and
longer horizons.

Fig. 4: Size of the Wald test at the 5% nominal level for different sample sizes and a given horizon (h= 12).
The red, blue, orange, and green curves correspond to the post-double selection procedure with HAC standard
errors, the de-biased least squares with HAC standard errors, the de-biased two-stage with HAC standard
errors, and the de-biased two-stage with HC standard errors, respectively. The number of time series is
d = 60. The number of replications is 1,000.

Additionally, Figure 4 compares the size of the Wald test across different approaches
for a fixed horizon (h = 12) and increasing sample sizes. It is obvious that the size of the
Wald test converges to the nominal level for all inference procedures. Clearly, approaches
based on the two-stage estimator provide better performance and better convergence rates
to the nominal level. These results are consistent across different horizons, as shown by
Figures A.3 to A.5.

In summary, the simulation results show that our approaches for testing the null hy-
pothesis of Granger non-causality using the Wald test perform well. The de-biased two-stage
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estimator with heteroskedasticity-consistent (HC) standard errors undeniably provides the
best performance in the simulation framework we considered, highlighting the advantage
of debiasing the two-stage estimator and providing a robust variance estimator. This moti-
vates our recommendation to use this approach in practice if the weak assumptions imposed
on the VAR innovations to obtain the consistency of the HC variance estimator are likely to
be satisfied. I.i.d. innovations and many martingale difference sequences obviously meet
these conditions.

8. Empirical application: country-level economic policy un-
certainty causal network

In this section, we apply our methodology to investigate the spillovers and contagions of
economic uncertainty among a large set of countries and over time using multi-horizon
Granger causality tests. We rely on the measure of policy-related economic uncertainty de-
veloped by Baker et al. (2016). The policy economic uncertainty index is constructed from
three types of underlying components: (i) the first component quantifies newspaper cover-
age of policy-related economic uncertainty; (ii) the second component measures the level
of uncertainty regarding the future path of the federal tax code; and (iii) the third com-
ponent captures the level of uncertainty associated with macroeconomic variables. Data
on uncertainty indices are collected from the Economic Policy Uncertainty website. Our
sample consists of 20 series (20 countries) of country-level monthly indices collected from
January 2003 to February 2024, totaling n= 254 observations.

We conduct pairwise Granger causality tests at different horizons. For a specific horizon
h and for each pair of countries A and B, we check Granger causality from A to B conditional
on countries other than A and B, and vice versa. We assume that our ‘high-dimensional’
system follows a VAR representation. We test the null hypothesis of Granger non-causality
using a Wald test based on the two-stage de-biased estimator. The tests are performed at a
10% significance level, and critical values are taken from χ2(d f ), with d f = 4. In Figure 5,
we represent the resulting causal graph at different horizons. For each horizon and for each
cell, the darker the color, the stronger the causal relation from the corresponding column
country to the row country. A white cell means that there is no causality from the column
country to the row country.

Figure 5 reveals, among other things, that: (1) Almost all countries exhibit causality
to themselves, either in the short run or in the long run; (2) There is causality from the US
to China in the short run, but no causality in the long run. Conversely, there is no causality
from China to the US in the short run, but there is strong causality in the long run; (3) There
is no causality from the US to the UK, neither in the short run nor in the long run. The same
result holds for causality from the UK to the US; (4) There is no causality from the US to
Canada at any horizon we considered. Likewise, there is no causality from Canada to the
US; (5) There is causality from Canada to France in the short run and mid-term. However,
there is no causality from France to Canada, neither in the short run nor in the long run.
It may seem surprising that there is no causal effect between the US and Canada, but this
could be explained by the multi-dimensional nature of our sample. Indeed, it is possible
that, conditional on all other countries considered besides Canada and the US, Canada does
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not provide relevant information to improve the prediction of uncertainty around the US
economy at different horizons we consider, and vice versa. Of course, considering a model
that includes only the indices of Canada and the US would obviously lead to a causal effect,
which could be misleading due to the omission of other variables.

Fig. 5: Granger causality test at different horizons. For each cell, the darkness of the color is 1− p-value and
represents the strength of the Granger causality from the column variable to the row variable. Data: 2003:01
- 2024:02 time span, 254 number of observations, and 20 countries. VAR estimation method: adaptive LASSO
on VAR(4). Causality test: two-stage estimation, Wald test with critical value from χ2(d f ), d f = 4.

9. Conclusion

In this paper, we investigate a Wald test for multi-horizon Granger causality within a high-
dimensional sparse VAR framework. To define the Wald test statistics, we propose two
types of de-biased estimation methods for the multi-horizon Granger-causal coefficients:
the Least Squares method and a two-stage procedure, along with HAC standard error es-
timates. To ensure robust inference, we impose a specific regularity condition and derive
HR/HC standard errors that do not require correcting for serial correlation in the projection
residuals. Finally, we apply our methodology to analyze the spread of economic uncertainty
at the country level and visualize causal connectedness based on the significance levels of
the causality tests.
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Our de-biased estimators address the econometric challenge posed by Local Projec-
tion (LP) equations for horizons h > 1, which may not be sparse even under a sparsity
assumption on the underlying VAR process. From a practical perspective, our robust in-
ference approach alleviates the relatively poor performance of HAC-based inference or the
computational burden of bootstrap methods in high-dimensional settings. Our application
underscores that high-dimensional multi-horizon Granger causality tests offer a more com-
prehensive understanding of the causal mechanisms within dynamic systems compared to
single-horizon Granger tests, expanding the toolkit for practitioners conducting causality
studies across multiple horizons.

Our study presents several avenues for future research. One compelling and econo-
metrically challenging extension is to move beyond the linear structure of the HD-VAR
framework and investigate Granger-causal coefficients and impulse responses in a non-
linear setting. This would result in Local Projection (LP) equations that become nonlinear
transformations of the underlying nonlinear VAR model, thereby taking on a more complex
form. A promising approach could involve adopting flexible functional approximations,
such as nonparametric series estimators, as proposed by Belloni et al. (2014a). Similarly,
Hecq et al. (2023) recognize the potential of incorporating nonlinear regressors, such as
quadratic terms or Rectified Linear Units (ReLU), to enhance flexibility in high-dimensional
VAR models. These advancements have significant applications in macroeconomics, par-
ticularly in the study of nonlinear (state-dependent) causal responses, as demonstrated by
Gonçalves, Herrera, Kilian, and Pesavento, 2021 and 2024.

33



References

R. Adamek, S. Smeekes, and I. Wilms. Lasso inference for high-dimensional time series.
Journal of Econometrics, 235(2):1114–1143, 2023.

R. Adamek, S. Smeekes, and I. Wilms. Local projection inference in high dimensions. The
Econometrics Journal, page utae012, 2024.

A. Babii, E. Ghysels, and J. Striaukas. High-dimensional granger causality tests with an
application to vix and news. Journal of Financial Econometrics, 22(3):605–635, 2024.

S. R. Baker, N. Bloom, and S. J. Davis. Measuring economic policy uncertainty. The quarterly
journal of economics, 131(4):1593–1636, 2016.

S. Basu and G. Michailidis. Regularized estimation in sparse high-dimensional time series
models. The Annals of Statistics, pages 1535–1567, 2015.

A. Belloni, D. Chen, V. Chernozhukov, and C. Hansen. Sparse models and methods for
optimal instruments with an application to eminent domain. Econometrica, 80(6):2369–
2429, 2012.

A. Belloni, V. Chernozhukov, and C. Hansen. High-dimensional methods and inference on
structural and treatment effects. Journal of Economic Perspectives, 28(2):29–50, 2014a.

A. Belloni, V. Chernozhukov, and C. Hansen. Inference on treatment effects after selection
among high-dimensional controls. Review of Economic Studies, 81(2):608–650, 2014b.

B. S. Bernanke, J. Boivin, and P. Eliasz. Measuring the effects of monetary policy: a factor-
augmented vector autoregressive (favar) approach. The Quarterly journal of economics,
120(1):387–422, 2005.

P. J. Bickel and E. Levina. Covariance regularization by thresholding. The Annals of Statistics,
36(6):2577 – 2604, 2008. doi: 10.1214/08-AOS600. URL https://doi.org/10.
1214/08-AOS600.

J. Breitung and R. Brüggemann. Projection estimators for structural impulse responses.
Oxford Bulletin of Economics and Statistics, 85(6):1320–1340, 2023.

T. Cai and W. Liu. Adaptive thresholding for sparse covariance matrix estimation. Journal
of the American Statistical Association, 106(494):672–684, 2011.

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins.
Double/debiased machine learning for treatment and structural parameters, 2018.

R. A. Davis, P. Zang, and T. Zheng. Sparse vector autoregressive modeling. Journal of
Computational and Graphical Statistics, 25(4):1077–1096, 2016.

F. X. Diebold and K. Yılmaz. On the network topology of variance decompositions: Mea-
suring the connectedness of financial firms. Journal of econometrics, 182(1):119–134,
2014.

34

https://doi.org/10.1214/08-AOS600
https://doi.org/10.1214/08-AOS600


J.-M. Dufour and E. Renault. Short run and long run causality in time series: theory. Econo-
metrica, pages 1099–1125, 1998.

J.-M. Dufour and A. Taamouti. Short and long run causality measures: Theory and infer-
ence. Journal of Econometrics, 154(1):42–58, 2010.

J.-M. Dufour and E. Wang. Simple robust two-stage estimation and inference for general-
ized impulse responses and multi-horizon causality. Technical Report, McGill University,
Economic Department, 2024.

J.-M. Dufour, D. Pelletier, and É. Renault. Short run and long run causality in time series:
inference. Journal of Econometrics, 132(2):337–362, 2006.

J. Geweke. Inference and causality in economic time series models. Handbook of economet-
rics, 2:1101–1144, 1984.

S. Gonçalves, A. M. Herrera, L. Kilian, and E. Pesavento. Impulse response analysis for
structural dynamic models with nonlinear regressors. Journal of Econometrics, 225(1):
107–130, 2021.

S. Gonçalves, A. M. Herrera, L. Kilian, and E. Pesavento. State-dependent local projections.
Journal of Econometrics, page 105702, 2024.

C. W. Granger. Investigating causal relations by econometric models and cross-spectral
methods. Econometrica: journal of the Econometric Society, pages 424–438, 1969.

F. Han and H. Liu. Transition matrix estimation in high dimensional time series. In Inter-
national conference on machine learning, pages 172–180. PMLR, 2013.

A. Hecq, L. Margaritella, and S. Smeekes. Granger causality testing in high-dimensional
vars: a post-double-selection procedure. Journal of Financial Econometrics, 21(3):915–
958, 2023.

Ò. Jordà. Estimation and inference of impulse responses by local projections. American
economic review, 95(1):161–182, 2005.

L. Kilian and H. Lütkepohl. Structural vector autoregressive analysis. Cambridge University
Press, 2017.

G. Koop, M. H. Pesaran, and S. M. Potter. Impulse response analysis in nonlinear multivari-
ate models. Journal of econometrics, 74(1):119–147, 1996.

J. Krampe and E. Paparoditis. Sparsity concepts and estimation procedures for high-
dimensional vector autoregressive models. Journal of Time Series Analysis, 42(5-6):554–
579, 2021.

J. Krampe, E. Paparoditis, and C. Trenkler. Structural inference in sparse high-dimensional
vector autoregressions. Journal of Econometrics, 234(1):276–300, 2023.

E. Lazarus, D. J. Lewis, J. H. Stock, and M. W. Watson. Har inference: Recommendations
for practice. Journal of Business & Economic Statistics, 36(4):541–559, 2018.

35



E. Lazarus, D. J. Lewis, and J. H. Stock. The size-power tradeoff in har inference. Econo-
metrica, 89(5):2497–2516, 2021.

A. Lusompa. Local projections, autocorrelation, and efficiency. Quantitative Economics, 14
(4):1199–1220, 2023.

H. Lütkepohl. Testing for causation between two variables in higher-dimensional var mod-
els. In Studies in applied econometrics, pages 75–91. Springer, 1993.

H. Lütkepohl. New introduction to multiple time series analysis. Springer Science & Business
Media, 2005.

R. P. Masini, M. C. Medeiros, and E. F. Mendes. Regularized estimation of high-dimensional
vector autoregressions with weakly dependent innovations. Journal of Time Series Anal-
ysis, 43(4):532–557, 2022.

M. C. Medeiros and E. F. Mendes. L1-regularization of high-dimensional time-series models
with non-gaussian and heteroskedastic errors. Journal of Econometrics, 191(1):255–271,
2016.

K. Miao, P. C. Phillips, and L. Su. High-dimensional vars with common factors. Journal of
Econometrics, 233(1):155–183, 2023.

J. L. Montiel Olea and M. Plagborg-Møller. Local projection inference is simpler and more
robust than you think. Econometrica, 89(4):1789–1823, 2021.

H. H. Pesaran and Y. Shin. Generalized impulse response analysis in linear multivariate
models. Economics letters, 58(1):17–29, 1998.

A. J. Rothman, E. Levina, and J. Zhu. Generalized thresholding of large covariance matrices.
Journal of the American Statistical Association, 104(485):177–186, 2009.

P. K. Salamaliki and I. A. Venetis. Transmission chains of economic uncertainty on macroe-
conomic activity: new empirical evidence. Macroeconomic Dynamics, 23(8):3355–3385,
2019.

S. Song and P. J. Bickel. Large vector auto regressions. arXiv preprint arXiv:1106.3915,
2011.

J. H. Stock and M. W. Watson. Dynamic factor models, factor-augmented vector autoregres-
sions, and structural vector autoregressions in macroeconomics. In Handbook of macroe-
conomics, volume 2, pages 415–525. Elsevier, 2016.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statis-
tical Society Series B: Statistical Methodology, 58(1):267–288, 1996.

S. van de Geer, P. Bühlmann, Y. Ritov, and R. Dezeure. On asymptotically optimal confidence
regions and tests for high-dimensional models. The Annals of Statistics, 42(3), 2014.

H. White. Asymptotic theory for econometricians, revised edition. Academic press, San Diego,
Florida, 1999.

36



I. Wilms, S. Basu, J. Bien, and D. S. Matteson. Sparse identification and estimation of
large-scale vector autoregressive moving averages. Journal of the American Statistical
Association, pages 1–12, 2021.

K. C. Wong, Z. Li, and A. Tewari. Lasso guarantees for β-mixing heavy-tailed time series.
The Annals of Statistics, 48(2):1124–1142, 2020.

W. B. Wu and Y. N. Wu. High-dimensional linear models with dependent observations.
Preprint, 2014.

K.-L. Xu and J. Guo. A new test for multiple predictive regression. Journal of Financial
Econometrics, 22(1):119–156, 2024.

H. Zou. The adaptive lasso and its oracle properties. Journal of the American statistical
association, 101(476):1418–1429, 2006.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 67(2):301–320, 2005.

37



A. Appendix

A.1. Proofs of results

This section collects the proofs of the theoretical results. For notation convenience, we will
omit the ‘re’ superscript in all regularized estimators. For example, Â will refer to Â(re),
the regularized estimator of the VAR matrix coefficient. Throughout this Appendix, C will
denote a generic positive constant that may vary with different uses. We will also use the
following abbreviations in what follows: T (triangle inequality), CS (Cauchy–Schwarz in-
equality), LIE (law of iterated expectations), and m.d.s. (martingale difference sequence).
Moreover, we will apply the following matrix norm inequalities to any compatible matrices
B1, B2, U , and V , and to any column vector x:
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Proof of Theorem 6.1. To obtain rate in part (i), it worth notice that T
implies
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Note that ût − ut = J(A − Â)Wt−1 by wt = JAWt−1 + ut and ût = wt − J ÂWt−1. Also, by
Lemma A.1 below applied to suitable filters, we have
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It follows by Assumption 2(iii), by ∥AB∥max ≤ ∥A∥∞∥B∥max and ∥AB∥∞ ⩽ ∥A∥∞∥B∥∞ for
all compatible matrices A and B, and by ∥J∥∞ = 1 that
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and

I2 :=
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Therefore,
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The result (i) follows from the following equivalence inequality of norm matrix which hold
fo any r-by-s matrix B: ∥B∥∞ ≤ d∥B∥max.

The proofs of parts (ii) and (iii) require first deriving the orders of some auxiliary
terms. First note that the stability condition, see Assumption 2(ii), implies
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≤ ∥Â−A∥∞
∞
∑

m,s=0



Âs
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Using similar argument yields
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Given the results above, the proof of part (iii) is straightforward. First, it is worth

noting that ΣUW =
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Moreover, by Assumption 2(v)
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are of the same order for all j, then by T,
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Now let us consider the proof of part (ii). By arguments above and
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Plugging derived rates into (A.2) and dropping higher-order terms yiels,
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giving the result for part (ii).

Lemma A.1 (Lemma A.2 of Krampe et al. (2023)).
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Proof of Lemma A.1. See Appendix A of Krampe et al. (2023).

Lemma A.2.
Under Assumptions 2(ii), and (iv)-(vi), it holds true that:
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Proof of Lemma A.2. First note that the VAR(p) underlying equation has a companion rep-
resentation in terms of VAR(1) of the form Wt = AWt−1+ J ′ut . This implies, by the stability
condition (see Assumption 2(ii)), the following VAR(∞) representation:

Wt =
∞
∑

j=0

Υ jut− j with Υ j = A jJ ′ for j = 0, 1, . . . ,∞.

Note that the same stability condition ensures that the filter
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result in part (a) of the Lemma. Also, Assumption 2(v) implies that
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the second result in part (a) follows by T.
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condition and the fact that



Σ−1
W





2 = O(1) (see Assumption 2(vi)). The result follows from

Lemma A.1 applied to the filters
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Given part (b), the results in part (c) are straightforward. They follows from the fact

that R1R′1 = Ip and R1R′2 = Op×(d−1)p.
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and the second result is obtained by applying the same lemma to the following filters:
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Note that all these filters satisfy the condition required for applying LemmaA.1 due to the
stability condition and the fact that ∥J∥2 = 1 and
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Lemma A.3.
Let
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Proof of Lemma A.3. First of all, it worth noting that part (b) of Lemma A.2 implies, by T,
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Also, it is easy to verify that ∥DN−1∥1 = Op(1) and ∥dDN
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giving result in part (a).

To obtain the result in part (b), first note that
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Lemma A.4.

43



If Assumption 2 is satisfied, then for any vector v ∈ Rp such that ∥v∥1 = 1,

p
nv′

�

β̂
(de−LS)
1,h − β1,h

�

= v′
�

E
�

W⊥1,tW
′
1,t

�
�−1

 

1
p

n

n−h
∑

t=p

W⊥1,t et,h

!

+Op

�

ν̃n/
p

n+


Σ̂W −ΣW





∞ kW

p

ν̃n +




β̂2,h − β2,h







∞

�

p

ν̃n +


Σ̂W −ΣW





∞ kW

p

ν̃n

�

�

(A.3)

Proof of Lemma A.4. By the definition of the de-LS estimator,
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where,
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!

(A.5)

Λ1 := v′
 

1
n

n−h
∑

t=p

Ŵ⊥1,tW
′
1,t

!−1 

1
p

n

n−h
∑

t=p

Ŵ⊥1,t et,h

!

− v′
 

1
n

n−h
∑

t=p

W⊥1,tW
′
1,t

!−1 

1
p

n

n−h
∑

t=p

W⊥1,t et,h

!

Λ2 := v′
 

1
n

n−h
∑

t=p

Ŵ⊥1,tW
′
1,t

!−1 

1
p

n

n−h
∑

t=p

Ŵ⊥1,tW
′
2,t

�

β2,h − β̂2,h

�

!

.

Using the fact that

W⊥1,t =
�

R1Σ
−1
W R′1

�−1
R1Σ

−1
W Wt and Ŵ⊥1,t =

�

R1Σ̂
−1
W R′1

�−1
R1Σ̂

−1
W Wt ,

Λ1 can be rewritten as

Λ1 =
1
p

n

n−h
∑

t=p

v′
�

dDN
−1

R1Σ̂
−1
W − DN−1R1ΣW

�

Wt et,h = Λ11 +Λ12 +Λ13,

where dDN and DN are defined as in the statement of Lemma A.3 and

Λ11 :=
1
p

n

n−h
∑

t=p

v′
�

dDN
−1
− DN−1

�

R1Σ
−1
W Wt et,h
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Λ12 :=
1
p

n

n−h
∑

t=p

v′DN−1R1

�

Σ̂−1
W −Σ

−1
W

�

Wt et,h (A.6)

Λ13 :=
1
p

n

n−h
∑

t=p

v′
�

dDN
−1
− DN−1

�

R1

�

Σ̂−1
W −Σ

−1
W

�

Wt et,h.

Also,

Λ2 =
1
p

n

n−h
∑

t=p

v′dDN
−1

R1Σ̂
−1
W WtW

′
t R′2

�

β2,h − β̂2,h

�

=
�

Λ21 +Λ22 +Λ23 +Λ24

�

�

β2,h − β̂2,h

�

,

where

Λ21 :=
1
p

n

n−h
∑

t=p

v′R1Σ
−1
W WtW

′
t R′2

Λ22 :=
1
p

n

n−h
∑

t=p

v′R1

�

Σ̂−1
W −Σ

−1
W

�

WtW
′
t R′2

Λ23 :=
1
p

n

n−h
∑

t=p

v′
�

dDN
−1
− Ip

�

R1Σ
−1
W WtW

′
t R′2 (A.7)

Λ24 :=
1
p

n

n−h
∑

t=p

v′
�

dDN
−1
− Ip

�

R1

�

Σ̂−1
W −Σ

−1
W

�

WtW
′
t R′2.

It remains to show that the terms in (A.5), (A.6) and (A.7) are of the specified orders so
that the result follows. By Lemma A.2, Lemma A.3 and the fact that



DN−1




max = Op(1)

and




Σ̂−1
W







∞
= Op

�

kW

�

, we have

�

�Λ0

�

�=

�

�

�

�

�

�

1
p

n

n−h
∑

t=p

v′
�

DN−1 − Ip

�

R1Σ
−1
W Wt et,h

�

�

�

�

�

�

≤ ∥v∥1




DN−1 − Ip







max













1
p

n

n−h
∑

t=p

R1Σ
−1
W Wt et,h













max

= Op

�

eνn/
p

n
�

;

�

�Λ11

�

�≤
1
p

n

n−h
∑

t=p

p
∑

r, j=1

�

�vr

�

�

�

�

�e′r

�

dDN
−1
− DN−1

�

e j

�

�

�

�

�

�e′jR1Σ
−1
W Wt et,h

�

�

�

⩽ p∥v∥1






dDN
−1
− DN−1







max











1
p

n

n−h
∑

t=P

R1Σ
−1
W Wt et,h











max

= Op

�


Σ̂W −ΣW





∞ kW

p

ν̃n

�

;
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�

�Λ12

�

�≤
1
p

n

n−h
∑

t=p

p
∑

r, j=1

|vr |
�

�

�e′r DN−1e j

�

�

�

�

�

�e′jR1

�

Σ̂−1
W −Σ

−1
W

�

Wt et,h

�

�

�

≤ p∥v∥1


DN−1




max



Σ̂−1
W





∞



Σ̂W −ΣW





∞













1
p

n

n−h
∑

t=p

Σ−1
W Wt et,h













max

= Op

�


Σ̂W −ΣW





∞ kW

p

ν̃n

�

;

�

�Λ13

�

�≤ p∥v∥1






dDN
−1
− DN−1







max



Σ̂−1
W





∞



Σ̂W −ΣW





∞













1
p

n

n−h
∑

t=p

Σ−1
W Wt et,h













max

= Op

�


Σ̂W −ΣW





2

∞ k2
W

p

ν̃n

�

;

�

�

�Λ21

�

β2,h − β̂2,h

�

�

�

�⩽
1
p

n

n−h
∑

t=p

p
∑

r=1

|v|r
�

�

�e′rR1Σ
−1
W WtW

′
t R′2

�

β2,h − β̂2,h

�

�

�

�

⩽ ∥v∥1




β2,h − β̂2,h







∞













1
p

n

n−h
∑

t=p

R1Σ
−1
W WtW

′
t R′2













max

= Op

�




β̂2,h − β2,h







∞

p

ν̃n

�

;

�

�Λ22

�

�≤ ∥v∥1


Σ̂−1
W





∞



Σ̂W −ΣW





∞













1
p

n

n−h
∑

t=p

R1Σ
−1
W WtW

′
t R′2













max

= Op

�


Σ̂W −ΣW





∞ kW

p

ν̃n

�

;



Λ23



≤ ∥v∥1






dDN
−1
− Ip







max













1
p

n

n−h
∑

t=p

R1Σ
−1
W WtW

′
t R′2













max

= Op

�

ν̃n/
p

n+


Σ̂W −ΣW





∞ kW

p

ν̃n

�

;

�

�|Λ24

�

�≤∥v∥1


Σ̂−1
W





∞



Σ̂W −ΣW





∞







dDN
−1
−Σp







max













1
p

n

n−h
∑

t=p

R2Σ
−1
W WtW

′
t R′2













max

=Op

�



Σ̂W −ΣW





∞ kW

�

ν̃n/
p

n+


Σ̂W −ΣW





∞ kW

p

ν̃n

�
�

.

By substituting the derived rates into Equation (A.4) and neglecting the higher-order
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terms, we obtain the result.

Lemma A.5.
Let

dCN :=
1
n

n−h
∑

t=p

R1Σ̂
−1
UW ÛtW

′
t R′1 and CN :=

1
n

n−h
∑

t=p

R1Σ
−1
UW UtW

′
t R′1.

Under Assumptions 2(ii), and (iv)-(vi), it holds true that:

(a)













1
p

n

n−h
∑

t=p

Σ−1
UW Ut eth













max

= Op

�

p

ν̃n

�

and













1
n

n−h
∑

t=p

Σ−1
UW UtW

′
t − Idp













max

= Op

�
Æ

ν̃n/n
�

;

(b)






dCN
−1
− CN−1







max
= Op

�

∥Â−A∥∞kUW +


Σ̂UW −ΣUW





∞ kUW

�

;

(c)






dCN
−1
− Ip







max
= Op

�
Æ

ν̂n/n+ ∥Â−A∥∞kUW +


Σ̂UW −ΣUW





∞ kUW

�

.

Proof of Lemma A.5. First recall that the VAR(∞) representation of the VAR model, under
the stability condition, allows to to write Wt =

∑∞
k=0Υ jut−k. Also, let ẽp j, j = 1, . . . , p denote

the d-dimensional unit vectors, where ẽp j containts 1 at the jth position and 0 elsewhere.
Then,

Ut :=
�

u′t , u′t−1, · · · , u′t−p+1

�′
=

p−1
∑

j=0

�

ẽp( j+1) ⊗ Id

�

ut− j,

and therefore

ΣUW := E
�

UtW
′
t

�

=
p−1
∑

j=0

�

ẽp( j+1) ⊗ Id

�

ΣuΥ
′
j .

To derive the second result in part (a), consider the following filters:

Φ
(1)
j =

�

Σ−1
UW

�

ẽp( j+1) ⊗ Id

�

if j < p
0 otherwise

and Φ(2)k = Υk

It is obvious that
∑∞

i=0



Φ
(1)
j





2 = O(1) =
∑∞

k=0



Φ
(2)
k





2, where the second equality follows
from the stability condition and the first equality follows from the fact that



Σ−1
UW





2 =
O(1) (see Assumption 2(vi)). The result follows from Lemma A.1 applied to the filters
¦

Φ
(k)
j , j = 0, 1, . . .

©

, k = 1, 2. The first result in part (a) follows from the same Lemma A.1
applied to the

Φ
(1)
j =

�

0 if j < h and j ⩾ p+ h− 1
Σ−1

UW

�

ẽp( j−h+1) ⊗ Id

�

otherwise
and Φ(2)k =

�

e′y JAkJ ′ if k < h
0 otherwise

and given the fact that 1p
n

∑n−h
t=pΣ

−1
UW Ut et,h =

1p
n

∑n
t=p+hΣ

−1
UW Ut−het−h,h, where

Ut−h =
p+h−1
∑

j=h

�

ẽp( j−h+1) ⊗ Id

�

ut− j and et−h,h =
h−1
∑

k=0

u′t−kJ
�

A′
�k

J ′ey .
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For part (b), first noting that







dCN − CN






max
=













1
n

n−h
∑

t=p

R1

�

Σ̂−1
UW Ût −Σ−1

UW Ut

�

W ′t R′1













max

⩽













1
n

n−h
∑

t=p

R1

�

Σ̂−1
W −Σ

−1
UW

� �

Ût − Ut

�

W ′t R′1













max

+











1
n

∑

t

R1

�

Σ̂−1
UW −Σ

−1
UW

�

UtW
′
t R′1











max

+











1
n

∑

t

R1Σ
−1
UW

�

Ût − Ut

�

W ′t R′1











max

= Ĩ1 + Ĩ2 + Ĩ3.

Also, applying again Lemma A.1 to suitable filters give










1
n

∑

t

Wt+ jW
′
t −ΣW ( j)











max

= Op

�
Æ

ν̃n/n
�

where ΣW ( j) := E
�

Wt+ jW
′
t

�

.

It then follows by


ΣW ( j)




max = O(1) that






∑

t Wt+ jW
′
t

�

n






max
= Op(1). This result is

implies by T, ∥J∥∞ = 1,




ẽp( j+1) ⊗ Id







∞
= 1, and

Ût − Ut =
p−1
∑

j=0

�

ẽp( j+1) ⊗ Id

� �

ût− j − ut− j

�

=
p−1
∑

j=0

�

ẽp( j+1) ⊗ Id

�

J(A− Â)Wt− j−1

that












1
n

n−h
∑

t=p

�

Ût − Ut

�

W ′t













max

⩽
p−1
∑

j=0





ẽp( j+1) ⊗ Id







∞
∥J∥∞∥Â−A∥∞













1
n

n−h
∑

t=p

Wt− j−1W ′t













max

= Op

�

∥Â−A∥∞
�

.

In addition, it worth noting that the second assertion in part (a) and T impliy that












1
n

n−h
∑

t=p

Σ−1
UW UtW

′
t













max

≤











1
n

n−h
∑

t=1

Σ−1
UW UtW

′
t − Idp











max

+




Idp







max
= Op

�
Æ

ν̃n/n
�

+ 1= Op(1).

It then follows by T,


Σ̂−1
UW





∞ = Op(1),


Σ−1
UW





∞ = Op(1), and


R1





∞ = 1 that

Ĩ1 ≤


R1





2

∞



Σ̂−1
UW −Σ

−1
UW





∞













1
n

n−h
∑

t=p

�

Ût − Ut

�

W ′t













max

= Op

�


Σ̂UW −ΣUW





∞ ∥Â−A∥∞k2
UW

�
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Ĩ2 ⩽


R1





2

∞



Σ̂−1
UW





∞



Σ̂UW −ΣUW





∞













1
n

n−h
∑

t=p

Σ−1
UW UtW

′
t













max

= Op

�


Σ̂UW −ΣUW





∞ kUW

�

Ĩ3 ⩽


R1





2

∞



Σ−1
UW





∞













1
n

n−h
∑

t=p

�

Ût − Ut

�

W ′t













max

= Op

�

∥Â−A∥∞kUW

�

.

By plugging in the derived rates and dropping the higher-order terms, we obtain






dCN − CN






max
= Op

�

∥Â−A∥∞kUW +


Σ̂UW −ΣUW





∞ kUW

�

.

The assertion in part (b) follows from A−1 − B−1 = A−1(B − A)B−1, ∥CN−1∥1 = Op(1), and

∥dCN
−1
∥∞ = Op(1).

Given parts (a) and (b), assertion in part (c) is straightforward. In fact, note that




CN − Ip







max
= Op

�

p

ν̃n/n
�

by the second assertion in part (a) and the fact that R1R′1 =

Ip.. It then follows by T and result we have just derived in part (b) that






dCN − Ip







max
=

Op

�

p

ν̃n/n+ ∥Â−A∥∞kUW +


Σ̂UW −ΣUW





∞ kUW

�

. The result in part (c) is obtained by

noting that ∥dCN
−1
∥∞ = Op(1) and dCN

−1
− Ip =dCN

−1 �

Ip −dCN
�

.

Lemma A.6.
If Assumption 2 is satisfied, then for any vector v ∈ Rp such that ∥v∥1 = 1,

p
nv′

�

β̂
(de−2S)
1,h − β1,h

�

= v′
�

E
�

U⊥1,tW
′
1,t

�
�−1

 

1
p

n

n−h
∑

t=p

U⊥1,t et,h

!

+Op

�

ν̃n/
p

n+ ∥Â−A∥∞kUW

p

ν̃n +


Σ̂UW −ΣUW





∞ kUW

p

ν̃n

+




β̂2,h − β2,h







∞

¦

p

ν̃n + ∥Â−A∥∞kUW

p

ν̃n +


Σ̂UW −ΣUW





∞ kUW

p

ν̃n

©

�

(A.8)

Proof of Lemma A.6. By the definition of the de-2S estimator,

p
nv′

�

β̂
(de−2S)
1,h − β1,h

�

= v′
 

1
n

n−h
∑

t=p

Û⊥1,tW
′
1,t

!−1 

1
p

n

n−h
∑

t=p

Û⊥1,t et,h

!

+ v′
 

1
n

n−h
∑

t=p

Û⊥1,tW
′
1,t

!−1 

1
p

n

n−h
∑

t=p

Û⊥1,tW
′
2,t

�

β2,h − β̂2,h

�

!

= v′
�

E
�

U⊥1,tW
′
1,t

�
�−1

 

1
p

n

n−h
∑

t=p

U⊥1,t et,h

!

+ Λ̃0 + Λ̃1 + Λ̃2,

(A.9)
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where,

Λ̃0 := v′







 

1
n

n−h
∑

t=p

U⊥1,tW
′
1,t

!−1

−
�

E
�

U⊥1,tW
′
1,t

�
�−1







 

1
p

n

n−h
∑

t=p

U⊥1,t et,h

!

(A.10)

Λ̃1 := v′
 

1
n

n−h
∑

t=p

Û⊥1,tW
′
1,t

!−1 

1
p

n

n−h
∑

t=p

Û⊥1,t et,h

!

− v′
 

1
n

n−h
∑

t=p

U⊥1,tW
′
1,t

!−1 

1
p

n

n−h
∑

t=p

U⊥1,t et,h

!

Λ̃2 := v′
 

1
n

n−h
∑

t=p

Û⊥1,tW
′
1,t

!−1 

1
p

n

n−h
∑

t=p

Û⊥1,tW
′
2,t

�

β2,h − β̂2,h

�

!

.

Using the fact that

U⊥1,t =
�

R1Σ
−1
UW R′1

�−1
R1Σ

−1
UW Ut and Û⊥1,t =

�

R1Σ̂
−1
UW R′1

�−1
R1Σ̂

−1
UW Ut ,

Λ̃1 can be rewritten as

Λ̃1 =
1
p

n

n−h
∑

t=p

v′
�

dCN
−1

R1Σ̂
−1
UW Ût − CN−1R1Σ

−1
UW Ut

�

et,h = Λ̃11 + Λ̃12 + Λ̃13,

where dCN and CN are defined as in the statement of Lemma A.5 and

Λ̃11 :=
1
p

n

n−h
∑

t=p

v′
�

dCN
−1
− CN−1

�

R1

�

Σ̂−1
UW −Σ

−1
UW

�

Ût et,h

Λ̃12 :=
1
p

n

n−h
∑

t=p

v′
�

dCN
−1
− CN−1

�

R1Σ
−1
UW Ût et,h (A.11)

Λ̃13 :=
1
p

n

n−h
∑

t=p

v′CN−1R1

�

Σ̂−1
UW −Σ

−1
UW

�

Ût et,h

Λ̃14 :=
1
p

n

n−h
∑

t=p

v′CN−1R1Σ
−1
UW (Ût − Ut)et,h

Also,

Λ̃2 =
1
p

n

n−h
∑

t=p

v′dCN
−1

R1Σ̂
−1
UW ÛtW

′
t R′2

�

β2,h − β̂2,h

�

=
�

Λ̃21 + Λ̃22 + Λ̃23 + Λ̃24

�

�

β2,h − β̂2,h

�

,

where

Λ̃21 :=
1
p

n

n−h
∑

t=p

v′R1Σ
−1
UW ÛtW

′
t R′2

50



Λ̃22 :=
1
p

n

n−h
∑

t=p

v′R1

�

Σ̂−1
UW −Σ

−1
UW

�

ÛtW
′
t R′2

Λ̃23 :=
1
p

n

n−h
∑

t=p

v′
�

dCN
−1
− Ip

�

R1Σ
−1
UW ÛtW

′
t R′2 (A.12)

Λ̃24 :=
1
p

n

n−h
∑

t=p

v′
�

dCN
−1
− Ip

�

R1

�

Σ̂−1
UW −Σ

−1
UW

�

ÛtW
′
t R′2.

It remains to show that the terms in (A.10), (A.11) and (A.12) are of the specified orders
so that the result follows.
First, note that E

�

U⊥1,tW
′
1,t

�

=
�

R1Σ
−1
UW R′1

�−1
, so that Λ̃0 =

∑n−h
t=p v′

�

CN−1Ip

�

R1Σ
−1
uW Ut et,h

�p
n.

It then follows by Lemma A.5 that

�

�

�

eΛ0

�

�

�≤ ∥v∥1




CN−1 − Ip







max













1
p

n

n−h
∑

t=p

R1Σ
−1
UW Ut et,h













max

= Op

�

ν̃n/
p

n
�

.

Lemma A.1 applied to suitable filters yields






∑n−h
t=p Wt− j−1et,h/

p
n






max
= Op

�

p

ν̃n

�

for

j = 0,1, · · · , p− 1. It then follows by T that











1
p

n

n−h
∑

t=1

�

Ût − Ut

�

et,h











max

≤
p−1
∑

j=0





ẽp( j+1) ⊗ Id







∞
∥J∥∞∥Â−A∥∞













1
p

n

n−h
∑

t=p

Wt− j−1et,h













= Op

�

∥Â−A∥∞
p

ν̃n

�

.

By Lemma A.5, T and the fact that




Σ̂−1
UW







∞
= Op

�

kUW

�

, we have

�

�Λ̃11

�

�≤

�

�

�

�

�

�

1
p

n

n−h
∑

t=p

v′
�

dCN
−1
− CN−1

�

R1

�

Σ̂−1
UW −Σ

−1
UW

�

(Ût − Ut)et,h

�

�

�

�

�

�

+

�

�

�

�

�

�

1
p

n

n−h
∑

t=p

v′
�

dCN
−1
− CN−1

�

R1

�

Σ̂−1
UW −Σ

−1
UW

�

Ut et,h

�

�

�

�

�

�

⩽ p∥v∥1






dCN
−1
− CN−1







max



Σ̂−1
UW −Σ

−1
UW





∞



R1





∞











1
p

n

n−h
∑

t=1

�

Ût − Ut

�

et,h











max

+ p∥v∥1






dCN
−1
− CN−1







max



Σ̂−1
UW





∞



Σ̂UW −ΣUW





∞













1
p

n

n−h
∑

t=p

Σ−1
UW Ut et,h













max

= Op

�






dCN
−1
− CN−1







max



Σ̂UW −ΣUW





∞ kUW

p

ν̃n

�

1+ kUW



Â−A




∞

�

�
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�

�Λ̃12

�

�⩽ p∥v∥1






dCN
−1
− CN−1







max



Σ−1
UW





∞



R1





∞











1
p

n

n−h
∑

t=1

�

Ût − Ut

�

et,h











max

+ p∥v∥1






dCN
−1
− CN−1







max



R1





∞













1
p

n

n−h
∑

t=p

Σ−1
UW Ut et,h













max

= Op

�






dCN
−1
− CN−1







max

p

ν̃n

�

1+ kUW



Â−A




∞

�

�

�

�Λ̃13

�

�= Op

�



Σ̂UW −ΣUW





∞ kUW

p

ν̃n

�

1+ kUW



Â−A




∞

�
�

�

�Λ̃14

�

�= Op

�

kUW



Â−A




∞

p

ν̃n

�

To obtain the order of Λ̃2, it is worth noting that






∑n−h
t=p R1Σ

−1
UW UtWtR

′
2







max

�p
n =

Op

�

p

ν̃n

�

by Lemma A.5 and the fact that R1R′2 = 0p×d(p−1). It fololows by T that

�

�Λ̃21

�

�= Op

�

∥A− Â∥∞
p

ν̃n +
p

ν̃n

�

�

�Λ̃22

�

�= Op

�

�

1+ ∥A− Â∥∞
�

Σ̂UW −ΣUW





∞ kUW

p
ν̃n

�

�

�Λ̃23

�

�= Op

�

�

1+ ∥A− Â∥∞
�







dCN
−1
− Ip







max

p
ν̃n

�

�

�Λ̃24

�

�= Op

�

�

1+ ∥A− Â∥∞
�







dCN
−1
− Ip







max



Σ̂UW −ΣUW





∞ kUW

p
ν̃n

�

.

By substituting the derived rates into Equation (A.9) and neglecting the higher-order
terms, we obtain the result.

Lemma A.7.
If Assumptions 2 and 3 are satisfied, then for any vector v ∈ Rp such that ∥v∥1 = 1, it holds
that

1
p

n

n−h
∑

t=p

v′R1Σ
−1
W Wt et,h

s.e.
β̂
(de−LS)
1,h

(v)
d
−→N (0, 1), (A.13)

and
1
p

n

n−h
∑

t=p

v′R1Σ
−1
UW Ut et,h

s.e.
β̂
(de−2S)
1,h

(v)
d
−→N (0, 1). (A.14)

Proof of Lemma A.7. The proof of this lemma will rely on Theorem 5.20 (Wooldridge -
White, p. 30) in White (1999). To prove the first result, consider, for any n and t, the
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following double array of scalars13,

znt :=
v′R1Σ

−1
W Wt et,h

s.e.
β̂
(de−LS)
1,h

(v)
.

We need to justify that {znt} satisfies the hypotheses in the statement of Theorem 5.20
(White, 1999), that is

(i) E
�
�

�znt

�

�

r
�

<∆<∞ for some r ⩾ 2 and all n, t;

(ii)
�

znt

	

is mixing with mixing coefficient of size − r/(r − 2), r > 2;

(iii) σ̄2
n := Var

�

n1/2
n−h
∑

t=p

znt

�

> δ > 0 for all n sufficiently large.

The first step in proving (ii) is to justify that 1/s.e.
β̂
(de−LS)
1,h

(v) = O(1). To do so, consider

ṽ = v/∥v∥2 so that ∥ṽ∥2 = 1. Then,


R′1 ṽ




2

2 = ṽ′R1R′1 ṽ′ = ṽ′ ṽ = 1. Also, we have


R1





2 = 1
by R1R′1 = Ip. By the unitary invariance property of the norm ∥·∥2, we have



R1Σ
−1
W R′1 ṽ





2 =


Σ−1
W





2 . Therefore, it follows by ∥v∥2 ≥ p∥v∥1 = p and Assumption 2(vii) that

v′(R1Σ
−1
W R′1)ΩW1,h(R1Σ

−1
W R′1)v ⩾ λmin

�

ΩW1,h

�


R1Σ
−1
W R′1





2

2 ⩾
1
C



Σ−1
W





2 ∥v∥
2
2 =

1
C



Σ−1
W





2

2

It follows by the fact that s.e.
β̂
(de−LS)
1,h

(v)2 = limn→∞

�

v′(R1Σ
−1
W R′1)ΩW1,h(R1Σ

−1
W R′1)v

�

and As-

sumption 2(vii) that 1/s.e.
β̂
(de−LS)
1,h

(v) = O(1).

Given this result, to show (i), it is sufficient to justify that

E
�

�v′R1Σ
−1
W Wt et,h

�

�

r
<∆<∞ for some r ≥ 1.

Recall that the stability assumption implies the following VAR(∞) representation for Wt:

Wt =
∞
∑

j=0

Υ jut− j with Υ j = A jJ ′.

Also, by definition,

et,h = e′yu(h)t =
h−1
∑

k=0

u′t+h−kΨ
′
key with Ψk = JAkJ ′.

For j = 0,1, · · · ,∞ and k = 0, 1, · · · , h− 1, let v1, j = Υ ′jΣ
−1
W R′1v and v2,k = Ψ ′key . Also, let

13Note that znt implicitly depends on n through d, as ΣW is a dp× dp matrix.
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ṽ1, j = v1, j/




v1, j







2
and ṽ2,k = v2,k/



v2,k





2 so that


ṽ1,i





2 = 1=


ṽ2,k





2. Then, it follows that,

v′R1Σ
−1
W W ′t et,h =

h−1
∑

k=0

ak, where ak =
�

v′2,kut+h−k

�

∞
∑

j=0

v′1, jut− j for all k = 0,1, · · · , h− 1.

By Assumptions 2(ii) and 3(ii), and given that ∥J∥2 =


R1





2 = 1, ∥v∥2 ≤ 1, and


Σ−1
W





2 ⩽ C , it follows, for r > 2 as defined in Assumption 3(ii), that

E
�

�

�v′2,kut+h−k

�

�

�

2r
=


v2,k





2 E
�

�

�ṽ′2,kut+h−k

�

�

�

2r
⩽ c0





e′y JAkJ ′






2
⩽ c0



Ak




2 ⩽ c0ϕ
k,

and

∞
∑

j=0

�

E
�

�

�v′1, jut− j

�

�

�

2r
�1/2r

=
∞
∑

j=0





v1, j







2

�

E
�

�

�ṽ′1, jut− j

�

�

�

2r
�1/2r

≤ c1/2r
0

∞
∑

j=0





Υ ′jΣ
−1
W R′1v







2
≤ c1/2r

0

∞
∑

j=0

ϕ j =
c1/2r

0

1−ϕ
<∞.

It then follows from the Minkowski’s inequality that

E

 

∞
∑

j=0

�

�

�v′1, jut− j

�

�

�

!2r

⩽

 

∞
∑

j=0

�

E
�

�

�v′1, jut− j

�

�

�

2r
�1/2r

!2r

⩽
c0

(1−ϕ)2r
.

Then hypothesis (ii) is verified by T and CS as follows:

E
�

�v′R1Σ
−1
W Wt et,h

�

�

r
⩽ E

 

h−1
∑

k=0

�

�ak

�

�

!r

⩽ 2(h−2)(r−1)
h−1
∑

k=0

E
�

�ak

�

�

r

⩽ C
h−1
∑

k=0

E
�

�

�v′2,kut+h−k

�

�

�

r

�

�

�

�

�

�

∞
∑

j=0

v′1, jut− j

�

�

�

�

�

�

r

⩽ C
h−1
∑

k=0







E
�

�

�v′2,kut+h−k

�

�

�

2r
E

 

∞
∑

j=0

�

�

�v′1, jut− j

�

�

�

!2r






1/2

⩽
C

(1−ϕ)r

h−1
∑

k=0

ϕk/2 =
C
�

1−ϕh/2
�

(1−ϕ)r
�

1−ϕ1/2
� :=∆<∞

To prove (ii), first note that et,h is strongly mixing of size −r/(r − 2), since it is a
linear combination of h-periods ut ’s, and h is some finite integer. Also Wt is mixing of size
−r/(r − 2) by Assumption 3(i). Due to Proposition 3.50 in White (1999) (if two elements
are strong mixing of size −a, then the product of two are also strong mixing of size −a ),
Wt et,h is mixing of size −r/(r − 2). Therefore, znt is mixing of size −r/(r − 2) as a linear
transformation of Wt et,h.
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First, we check the term U⊥1,t is a strong mixing process of size −r/(r − 2) for r > 2.
Due to Proposition 3.50 in White (1999) (if two elements are strong mixing of size −a, then
the product of two are also strong mixing of size −a ), it is easy to show that Ut is a strong

It remains to show (iii). Using the expression for W⊥1,t , it is straightforward that the
asymptotic variance of the de-biased LS, as defined by Equation (4.13), can be rewritten as

s.e.
β̂
(de−LS)
1,h

(v)2 = lim
n→∞

�

v′R1Σ
−1
W ΩW,hΣ

−1
W R1v

�

.

Then,

σ̄2
n := Var

 

n−1/2
n−h
∑

t=p

znt

!

=
v′R1Σ

−1
W Var

�

n−1/2
∑n−h

t=p Wt et,h

�

Σ−1
W R′1v

s.e.
β̂
(de−LS)
1,h

(v)2
→ 1,

as n→∞. Therefore, for any arbitrarily small δ > 0 (e.g., δ < 1/2), we have σ̄2
n > δ > 0

for all n sufficiently large.
Given (i), (ii), and (iii), the first result (A.13) follows by the conclusion of Theorem

5.20 (White, 1999).
To prove the second result (A.14), let

z̃nt :=
v′R1Σ

−1
UW Ut et,h

s.e.
β̂
(de−2S)
1,h

(v)
.

Similar to what was done above for de-biased LS, it is straightforward to check that 1/s.e.
β̂
(de−2S)
1,h

(v) =

O(1). Hence, znt has its r th moment bounded as long as this is the case for v′R1Σ
−1
UW Ut et,h.

Recall that

Ut =
p−1
∑

j=0

�

ẽp( j+1) ⊗ Id

�

ut− j,

so that if v3, j :=
�

ẽ′p( j+1) ⊗ Id

�

�

Σ−1
UW

�′
R′1v, for j = 0,1, · · · , p− 1, it holds that

v′R1Σ
−1
UW Ut et,h =

h−1
∑

k=0

bk, where bk =
�

v′2,kut+h−k

�

p−1
∑

j=0

v′3, jut− j for all k = 0, 1, · · · , h− 1.

Similar arguments as above lead to

E
�

�v′R1Σ
−1
UW Ut et,h

�

�≤ C pr 1−ϕh/2

1−ϕ1/2
:= ∆̃<∞,

so that hypothesis (i) is satisfied if znt is replaced by z̃nt .
In addition, it is straightforward to show that Ut is a strong mixing process of size−r/(r−2)
by its definition, as Ut contains finite number of lagged ut ’s and ut is a strong mixing process
of size −r/(r − 2) by Assumption 3(i).

Furthermore, σ̃2
n := Var

 

n−1/2
n−h
∑

t=p

z̃nt

!

→ 1, as n → ∞. Therefore, for any arbitrarily
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small δ̃ > 0 (e.g., δ̃ < 1/2), we have σ̃2
n > δ̃ > 0 for all n sufficiently large. The second

result (A.14) follows by the conclusion of Theorem 5.20 (White, 1999) applied to the double
array of scalars {z̃nt}.

Proof of Theorem 6.2. Recall that 1/s.e.
β̂
(de−LS)
1,h

(v) = O(1), as justified in the proof of Lemma

A.7 above. Using this result and Lemma A.4, we obtain, under Condition 6.1, that

p
nv′(β̂ (de−LS)

1,h − β1,h)

s.e.
β̂
(de−LS)
1,h

(v)
=

1
p

n

n−h
∑

t=p

v′R1Σ
−1
W Wt et,h

�

s.e.
β̂
(de−LS)
1,h

(v) + op(1).

Additionally, according to the first result of Lemma A.7 (see Equation (A.13)),

1
p

n

n−h
∑

t=p

v′R1Σ
−1
W Wt et,h

�

s.e.
β̂
(de−LS)
1,h

(v)
d
−→N (0,1),

giving the result.

Proof of Theorem 6.3. Recall that the variance estimator of the de-biased LS is given by

ÕAVar
(hac) �p

nβ̂ (de−LS)
1,h

�

= (R1Σ̂
−1
W R′1)Ω̂

(hac)
W1,h (R1Σ̂

−1
W R′1.

To simplify the proof, we drop the subscript and the superscript in Σ̂−1
W , Σ−1

W , Ω̂(hac)
W1,h , and

ΩW1,h. Nothe by T that,

�

�v′R1Σ̂
−1R′1Ω̂R1Σ̂

−1R′1v − v′R1Σ
−1R′1ΩR1Σ

−1R′1v
�

�

≤
�

�

�v′R1

�

Σ̂−1 −Σ−1
�

R′1
�

Ω̂−Ω
�

R1

�

Σ̂−1 −Σ−1
�

R′1v
�

�

�

+ 2
�

�

�v′R1

�

Σ̂−1 −Σ−1
�

R′1
�

Ω̂−Ω
�

R1Σ
−1R′1v

�

�

�+
�

�

�v′R1

�

Σ̂−1 −Σ−1
�

R′1ΩR1

�

Σ̂−1 −Σ−1
�

R′1v
�

�

�

+ 2
�

�

�v′R1

�

Σ̂−1 −Σ−1
�

R′1ΩR1Σ
−1R′1v

�

�

�+
�

�

�v′R1Σ
−1R′1

�

Ω̂−Ω
�

R1Σ
−1R′1v

�

�

�

= S1 + 2S2 + S3 + 2S4 + S5.

It remains to determine the orders of terms S1 to S5. First, note that by ∥v∥1 = 1,


R1





∞ = 1,
and



Σ−1




∞ = O(kW )

S1 ⩽

�

�

�

�

�

�

p
∑

j,r=1

vr v je
′
rR1

�

Σ̂−1 −Σ−1
�

R′1
�

Ω̂−Ω
�

R1

�

Σ̂−1 −Σ−1
�

R′1e j

�

�

�

�

�

�

⩽ C ∥v∥21


R1





2

∞







�

Σ̂−1 −Σ−1
�

R′1
�

Ω̂−Ω
�

R1

�

Σ̂−1 −Σ−1
�







max

= Op

�


Σ̂−1 −Σ−1




2

∞ ∥Ω̂−Ω∥max

�

;

56



S2 ≤ C






�

Σ̂−1 −Σ−1
�

R′1
�

Ω̂−Ω
�

R1Σ
−1






max
= Op

�


Σ̂−1 −Σ−1




∞ ∥Ω̂−Ω∥max kW

�

;

S5 ≤ C




Σ−1R′1
�

Ω̂−Ω
�

R1Σ
−1






max
= Op

�

∥Ω̂−Ω∥max k2
W

�

.

Also, it is well known that for any s.d.p. r × r matrix M and for all x , y ∈ Rr ,
�

�x ′M y
�

� ⩽
�

x ′M x
�1/2 �

y ′M y
�1/2
⩽ λmax(A)∥x∥2∥y∥2. Applying this result to S3 and S4, it follows by

λmax(Ω)≤ C , ∥v∥1 = 1,


R1





2 = 1, and


Σ−1




2 = O(1) that

S3 ⩽ λmax(Ω)




R1

�

Σ̂−1 −Σ−1
�

R′1v






2

2
≤ C



Σ̂−1 −Σ−1




2

∞



R1





2

∞ ∥v∥
2
2 = Op

�


Σ̂−1 −Σ−1




2

∞

�

;

S4 ⩽ λmax(Ω)




R1

�

Σ̂−1 −Σ−1
�

R′1v






2



R1Σ
−1R′1v





2 = Op

�


Σ̂−1 −Σ−1




∞

�

.

Therefore,
�

�

�

�

Ós.e.(hac)

β̂
(de−LS)
1,h

(v)2 − s.e.
β̂
(de−LS)
1,h

(v)2
�

�

�

�

= Op

�


Σ̂−Σ




∞ k2
W +



Ω̂−Ω




max k2
W

�

= op(1),

under Condition 6.2.
Note that this result and the fact that 1/s.e.

β̂
(de−LS)
1,h

(v) = O(1) (see the proof of Theorem

6.2) imply Ós.e.(hac)

β̂
(de−LS)
1,h

(v)2
.

s.e.
β̂
(de−LS)
1,h

(v)2
p
−→ 1. The second result then follows by Theorem

6.2 and Slutsky’s theorem.
It remains to show that the asymptotic variance of the de-biased LS has a simplified

representation of the form (6.4) if the contemporaneous error term ut is a conditional m.d.s.
First recall that using the expression of W⊥1,t , this asymptotic variance can be rewritten as

AVar
�p

nβ̂ (de−LS)
1,h

�

+ o(1) = R1Σ
−1
W ΩW,hΣ

−1
W R′1,

where

ΩW,h + o(1) =
∞
∑

k=−∞

E[WtW
′
t+ket,het+k,h] =

h−1
∑

j,l=0

∞
∑

k=−∞

Vjlk(h),

with
Vjlk(h) := E[WtW

′
t+ket,het+k,h] = E

�

e′yΨ jut+h− ju
′
t+k+h−lΨ

′
l eyWtW

′
t+k

�

,

and Wt =
∑∞

k=0Ψsut−s.
Let j, l ∈ {0, 1, . . . , h− 1} and k ∈ Z fixed. Also, let Ft = {ut , ut−1, . . .}. In order to simply
the expression of Vjlk(h), we consider three cases.

Case 1: k > h. In this case, 1 ≤ h− j ≤ h < k < k + 1 ≤ k + h− l and by the law of
iterated expectations (LIE) and the m.d.s. assumption,

Vjlk(h) = E
�

e′yΨ jut+h− j E
�

ut+k+h−l | Ft+k+h−l−1

�′
Ψ ′l eyWtW

′
t+k

�

= 0.
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Case 2: k < −h. In this case, k < k+ h− l ≤ k+ h < 0 < 1 ≤ h− j. It follows by the
LIE and the m.d.s. assumption that

Vjlk(h) = E
�

e′yΨ j E
�

ut+h− j | Ft+h− j−1

�

u′t+k+h−lΨ
′
l eyWtW

′
t+k

�

= 0.

Case 3: −h≤ k ≤ h. We consider three subcases.

• If k = l − j, then k < k + 1 ≤ k + h− l = h− j and h− j ≥ 1 so that by the LIE
and the conditional homoskedasticity assumption

Vjlk(h) = E
h

e′yΨ j E
�

ut+h− ju
′
t+h− j | Ft+h− j−1

�

Ψ ′l eyWtW
′
t+k

i

= e′yΨ jΣuΨ
′
l eyΣW ( j−l).

• If k < l − j, then k < k+1≤ k+h− l < h− j and h− j ≥ 1. It follows by the LIE
and the m.d.s. assumption that

Vjlk(h) = E
�

e′yΨ j E
�

ut+h− j | Ft+h− j−1

�

u′t+k+h−lΨ
′
l eyWtW

′
t+k

�

= 0.

• If k > l − j, then 1 ≤ h− j < k+ h− l and k < k+ 1 ≤ k+ h− l. By the LIE and
the m.d.s. assumption,

Vjlk(h) = E
�

e′yΨ jut+h− j E
�

ut+k+h−l | Ft+k+h−l−1

�′
Ψ ′l eyWtW

′
t+k

�

= 0.

It follows from all these calculations that

ΩW,h + o(1) =
h−1
∑

j,l=0

e′yΨ jΣuΨ
′
l eyΣW ( j − l),

leading to the result (6.4).

Proof of Theorem 6.5. First of all, consider ṽ = v/∥v∥2 so that ∥ṽ∥2 = 1. Then,
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2

2 =
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it follows by ∥v∥2 ≥ p∥v∥1 = p and Assumption 2(vii) that

v′
�

R1Σ
−1
UW R′1

�

ΩU1,h

�

R1

�

Σ−1
UW

�′
R′1
�

v ⩾ λmin

�

ΩU1,h

�





R1

�

Σ−1
UW

�′
R′1







2

2

⩾
1
C



Σ−1
U





2 ∥v∥
2
2 =

1
C



Σ−1
UW





2

2

It follows by the fact that s.e.β de−2S
1,h (v)2 = limn→∞

�
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�

R1Σ
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�
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�′
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v
�

and Assumption 2(vii) that 1/s.e.(de−2S)
β1,h

(v) = O(1). With this result and Lemma A.6, we
obtain, under Condition 6.3,

p
nv′(β̂ (de−2S)

1,h − β1,h)

s.e.
β̂
(de−2S)
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In addition, according to the second result of Lemma A.7 (see Equation (A.14)),

1
p

n

n−h
∑

t=p

v′R1Σ
−1
UW Ut et,h

�

s.e.(de−2S)
β1,h

(v)
d
−→N (0, 1),

giving the result.

Lemma A.8.
Let Wt follows (2.1), ∥A∥2 ≤ ϕ ∈ [0,1), and Assumption 2(vii), Assumption 3(i), and As-
sumption 4 hold. Then, for any v ∈ Rdp×1, with ∥v∥1 = 1.

lim
n→∞

n−1
n−h
∑

t=p

(v′st)
2/v′ΩU ,hv = 1. (A.15)

Proof of Lemma A.8. The convergence of (A.15) will be proved by verifying the conditions
of Corollary 3.48 in White (1999), (1) the process (v′st)2 is strong mixing of size −r/(1− r)
for r > 1, and (2) the (r + δ)-th moment of the process (v′st)2 is finite for some δ > 0. In
addition, Assumption 2 (vii) ensures the matrix ΩU ,h is non-singular.

First, we verify the first condition. Recall process st := (et,h, et+1,h, · · · , et+p−1,h) ⊗ ut ,
and et+i,h is a linear combination of ut+i+ j for i = 0, 1, · · · , p − 1 and j = 0,1, · · · , h − 1.
Since the horizon h is finite, and ut is strong mixing (α-mixing) processes with mixing size
−r/(r − 2), for r > 2 (Assumption 3 (i)), then the process st is strong mixing (α-mixing)
processes with mixing size −r/(r − 2). Moreover, since −r/(r − 2)< −r/(r − 1) for r > 2,
then the process st and (v′st)2 are strong mixing (α-mixing) processes with mixing size
−r/(r − 1).

Next, we verify the second condition. Without loss of generality, we show the following
moment condition holds for all λ ∈ Rd and ∥λ∥= 1,

E[∥(λ′ut et,h)
2∥r+δ] =E[∥λ′ut

h−1
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′
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(denote ṽ1 = JAiJ ′v1/∥JAiJ ′v1∥)
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�
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�1/2
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(Cauchy–Schwarz inequality)

≤
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�1/2

∞
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2

(apply ∥AB∥ ≤ ∥A∥∥B∥2, and ∥v1∥= 1,∥J∥2 = 1)
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�1/2 1
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By Assumption 4 and ∥ϕ∥< 1, the above term is bounded by a constant. Thus, the moment
condition on process (v′st)2 is verified. In turn, the convergence is proved.

Proof of Theorem 6.6. Arguments similar to those presented in the first part of the proof
of Theorem 6.3 can be invoked to obtain
�

�

�

�

Ós.e.(hac)
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1,h
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�

= op(1),

under Condition 6.4.
Note that this result and the fact that 1/s.e.

β̂
(de−2S)
1,h

(v) = O(1) (see the proof of Theorem

6.2) imply Ós.e.(hac)

β̂
(de−LS)
1,h

(v)2
.

s.e.
β̂
(de−2S)
1,h

(v)2
p
−→ 1. The second result then follows by Theorem

6.2 and Slutsky’s theorem.
Consistency of the HC variance estimator follows from Lemma A.8.

A.2. Additional simulation results

Fig. A.1: Size of the Wald test at the 5% nominal level for different horizons. The red, blue, orange, and
green curves correspond to the post-double selection procedure with HAC standard errors, the de-biased least
squares with HAC standard errors, the de-biased two-stage with HAC standard errors, and the de-biased two-
stage with HC standard errors, respectively. The number of time series is d = 60, and the sample size is
n= 240. The horizon is h= 0,1, . . . , 24. The number of replications is 1,000.
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Fig. A.2: Size of the Wald test at the 5% nominal level for different horizons. The red, blue, orange, and
green curves correspond to the post-double selection procedure with HAC standard errors, the de-biased least
squares with HAC standard errors, the de-biased two-stage with HAC standard errors, and the de-biased two-
stage with HC standard errors, respectively. The number of time series is d = 60, and the sample size is
n= 480. The horizon is h= 0,1, . . . , 24. The number of replications is 1,000.

Fig. A.3: Size of the Wald test at the 5% nominal level for different sample sizes and a given horizon
(h = 1). The red, blue, orange, and green curves correspond to the post-double selection procedure with
HAC standard errors, the de-biased least squares with HAC standard errors, the de-biased two-stage with
HAC standard errors, and the de-biased two-stage with HC standard errors, respectively. The number of time
series is d = 60. The number of replications is 1,000.
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Fig. A.4: Size of the Wald test at the 5% nominal level for different sample sizes and a given horizon
(h = 4). The red, blue, orange, and green curves correspond to the post-double selection procedure with
HAC standard errors, the de-biased least squares with HAC standard errors, the de-biased two-stage with
HAC standard errors, and the de-biased two-stage with HC standard errors, respectively. The number of time
series is d = 60. The number of replications is 1,000.

Fig. A.5: Size of the Wald test at the 5% nominal level for different sample sizes and a given horizon
(h = 8). The red, blue, orange, and green curves correspond to the post-double selection procedure with
HAC standard errors, the de-biased least squares with HAC standard errors, the de-biased two-stage with
HAC standard errors, and the de-biased two-stage with HC standard errors, respectively. The number of time
series is d = 60. The number of replications is 1,000.
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